3D Motion Analysis with Motion Signals

Cornelia Fermüller Computer Vision Laboratory, UMIACS University of Maryland

Motion Estimation: Classical Approach

original image: OpenMVG

State of the Art: Visual SLAM

LSD-SLAM (Vision Group TUM)

Issues with the Reconstruction Approach

- LIDAR/Vision: dependent on sensor and its range
- Difficulties with moving objects
- Challenges with fast changes in system motion
- Computationally expensive

Robust Visual Navigation in Nature

Visual Motion Capabilities

- Kinetic stabilization, Ego-motion
- Independent motion detection
- Obstacle avoidance
- Target pursuit
- Homing
- Landing

Image Motion Measurements

- The motion signal from spatio-temporal filters: normal flow
- 2. Events with the DVS sensor

Optic flow

Normal flow

Motion Interpretation

- Image motion or correspondence
- 2. Transformation between views (3D motion)

3. Scene geometry

3D Motion from Normal Flow

Structure from Motion

$$\mathbf{u} = \mathbf{u}_{tr} + \mathbf{u}_{rot}$$
$$\mathbf{u}_{tr} = \frac{1}{Z} \left(\hat{\mathbf{z}} \times (\mathbf{t} \times \mathbf{r}) \right)$$
$$\mathbf{u}_{rot} = \frac{1}{F} \left(\hat{\mathbf{z}} \times \left(\mathbf{r} \times ([\omega]_{\times} \mathbf{r}) \right) \right)$$

Classical Structure from Motion

• Established approach is the epipolar minimization: The "derotated flow" should be parallel to the translational flow.

$$(\mathbf{u} - \mathbf{u}_{rot}(\widehat{\omega})) \cdot (\widehat{\mathbf{z}} \times \mathbf{u}_{tr}(\widehat{\mathbf{t}})) = 0$$

 $argmin \, \hat{\mathbf{t}}, \widehat{\boldsymbol{\omega}} \, \sum_{i} | \left| \left(\mathbf{u}_{i} - \mathbf{u}_{\text{rot}_{i}}(\widehat{\boldsymbol{\omega}}) \right) \cdot \left(\hat{\mathbf{z}} \times \mathbf{u}_{\text{tr}_{i}}(\widehat{\mathbf{t}}) \right) \right| |_{2}$

With Normal Flow only

$$u_{tr}(\mathbf{t}) = A(x)\mathbf{t}$$
$$u_{rot}(\omega) = \mathbf{B}(\mathbf{x})\mathbf{w}$$

$$\|\mathbf{u}_{\mathbf{n}}(\mathbf{x})\| = \frac{A(\mathbf{x})\mathbf{t}}{Z(\mathbf{x})} \cdot \mathbf{n}(\mathbf{x}) + B(\mathbf{x})\mathbf{w} \cdot \mathbf{n}(\mathbf{x})$$

 $(\|\mathbf{u}_{\mathbf{n}}(\mathbf{x})\| - B(\mathbf{x})\mathbf{w} \cdot \mathbf{n}(\mathbf{x})) \cdot (A(\mathbf{x})\mathbf{t} \cdot \mathbf{n}(\mathbf{x})) > 0$

How was it implemented ?

arg min
$$_{\tilde{\mathbf{t}},\mathbf{w}} \sum_{i=1}^{N} \mathcal{V}(\mathbf{x}_i, \tilde{\mathbf{t}}, \mathbf{w})$$
 with (1)

$$\begin{aligned} \mathcal{V}(\mathbf{x}, \mathbf{t}, \mathbf{w}) &= \\ \begin{cases} 0 & \text{if} \left(\|\mathbf{u}_{\mathbf{n}}(\mathbf{x})\| - \mathbf{n}(\mathbf{x}) \cdot B(\mathbf{x})\mathbf{w} \right) \cdot \left(\mathbf{n}(\mathbf{x}) \cdot A(\mathbf{x})\mathbf{t}\right) > 0 \\ 1 & \text{if} \left(\|\mathbf{u}_{\mathbf{n}}(\mathbf{x})\| - \mathbf{n}(\mathbf{x}) \cdot B(\mathbf{x})\mathbf{w} \right) \cdot \left(\mathbf{n}(\mathbf{x}) \cdot A(\mathbf{x})\mathbf{t}\right) < 0 \end{aligned} \tag{2}$$

Translational Normal Flow

- In the case of translation each normal flow vector constrains the location of the FOE to a half-plane.
- Intersection of half-planes provides FOE.

Pattern Constraints

With only sign of normal flow

$$\mathcal{V}_{r}(\mathbf{x}, \tilde{\mathbf{t}}, \mathbf{w}) = \begin{cases} 1 & \text{if } \|\mathbf{u}_{\mathbf{n}}(\mathbf{x})\| > 0, \ \mathbf{n}(\mathbf{x}) \cdot B(\mathbf{x})\mathbf{w} < 0, \ \mathbf{n}(\mathbf{x}) \cdot A(\mathbf{x})\tilde{\mathbf{t}} < 0 \\ 1 & \text{if } \|\mathbf{u}_{\mathbf{n}}(\mathbf{x})\| < 0, \ \mathbf{n}(\mathbf{x}) \cdot B(\mathbf{x})\mathbf{w} > 0, \ \mathbf{n}(\mathbf{x}) \cdot A(\mathbf{x})\tilde{\mathbf{t}} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Coaxis vectors

Copoint vectors

with respect to axis ω = (A,B,C)

with respect to point t/||t|| = (r,s)

C. Fermüller, Y. Aloimonos. Direct Perception of Three-Dimensional Motion from Patterns of Visual Motion. Science 22, 27 1995

A new implementation of the positivity constraint

 $f(\mathbf{t}, \mathbf{w}, \mathbf{x}) = (u_{\mathbf{n}}(\mathbf{x}) - \mathbf{n}(\mathbf{x}) \cdot B(\mathbf{x})\mathbf{w}) \cdot (\mathbf{n}(\mathbf{x}) \cdot A(\mathbf{x})\mathbf{t})$

$$\arg\min_{\tilde{\mathbf{t}},\mathbf{w}}\sum_{i=1}^{N}\mathcal{H}(f(\tilde{\mathbf{t}},\mathbf{w},\mathbf{x}_{i})$$
(1)

where

$$\mathcal{H}(x) = \begin{cases} -x & \text{if } x \le 0\\ 0 & \text{otherwise} \end{cases}$$
(2)

F Barranco, C Fermüller, Y Aloimonos, E Ros. Joint direct estimation of 3D geometry and 3D motion using spatio temporal gradients. Pattern Recognition, 2020

The complete method

- Step 1: Solve iteratively in \boldsymbol{t} and $\boldsymbol{\omega}$ the inequality using an interior method

Iterate:

- Step 2: Solve for depth, run regularization on depth via an inpainting method
- Step 3: Solve Least squares for **t** and $\boldsymbol{\omega}$ (given the depth)

Behavior of Error function

epipolar constraint

positive depth constraint with normal flow vectors

ground-truth : red dot , estimated solution: yellow/green dot.

Estimated path for Kitti dataset

Optical illusion

C. Fermüller, R. Pless, Y. Aloimonos. Families of stationary patterns producing illusory movement: insights into the visual system, Proc. Roy. Soc.. B., 1997.

The Dynamic Vision Sensor

DVS: An asynchronous differential camera

Events with +1 or -1 polarity are emitted when the change in log intensity exceeds a predefined threshold:

The Dynamic Vision Sensor

DVS: An asynchronous differential camera

No motion blur

Event = {x,y,timestamp,polarity}

The Dynamic Vision Sensor

DVS: An asynchronous differential camera

High dynamic range

List of resources on Event-Based vision:

https://github.com/uzh-rpg/event-based vision resources

Fast events aid in segmentation

Stepping Feet Illusion

Variation of Stepping Feet Illusion

Variation of Stepping Feet Illusion

Simulation 2

Overview

- I. Optimization approach for event alignment
- II. Self-supervised deep learning for motion estimation and segmentation
- III. EV-IMO Dataset
- IV. EVDodge: Motion detection as input to control dodging
- VI. Motion segmentation in full 3D

Properties of this sensor

- + High temporal resolution
- + High dynamic range
- + Low Bandwidth signal
- + Low latency
- High noise

I. Egomotion+ Independent Motion

What is the problem?

• All the components are related.

Computer Vision Laboratory

*

Treat events as point clouds

Warp field $\Phi(d_x, d_y, d_r, d_\phi) : (x, y, t) \to (x + u\Delta t, y + v\Delta t, t)$

- d_x, d_y Shift in x and y
- d_r, d_{θ} Radial expansion, and rotation around z-axis Derived from divergence and curl

Approximation of 3D Motion Estimation

$$u(x,y)\Delta t = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} + \left\{ \frac{1}{2} curl_g \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \frac{1}{2} div_g \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \begin{pmatrix} x \\ y \end{pmatrix} \Delta t$$

$$d_x, d_y \qquad d_ heta$$

$$d_{z}$$

Approximates rigid movement of fronto-parallel plane

How to compute it?

• **Density** (from Event Count image)

$$\xi_{ij} = \{\{x', y', t\} : \{x', y', 0\} \in C', \ i = x', \ j = y'\}$$

$$D = \frac{\sum i, j |\xi_{i,j}|}{\#I}$$

Sum of events over all pixels / Number of occupied pixels

• Average time (from Time Stamp image)

$$\mathcal{T}_{ij} = \frac{1}{\mathcal{I}_{ij}} \sum t : t \in \xi_{ij}$$

Event-based Moving Object Detection and Tracking

Idea:

- Warp the 3D events according to a motion model: 4-parameter {x-y-z-roll}
- 2) Downproject all 3D events on a camera plane
- 3) Each pixel is the average of the event timestamps
- 4) Compute error gradients on the image
- 5) Go to (1)

Then, detect points which do not conform to a 4-parameter model

(d)

(c)

http://prg.cs.umd.edu/BetterFlow.html

A Mitrokhin, C Fermüller, C Parameshwara, Y Aloimonos. Event-based moving object detection and tracking, IROS 2018.

Dataset

Fast motion, Multiple Objects, Lighting Variations, Occlusion

Results

Algorithm

Improved Segmentation

(a) event cloud (b) after global motion compensation (c) Sparse tracklets on compensated event cloud, (d) Merged feature clusters (e) Output

C. Parameshwara, N. Sanket, C.Singh, C. Fermüller, Y. Aloimonos: Zero-Shot Multi-Motion Segmentation With a Monocular Event Camera. arXiv

Replace Optimization with Learning: I: Flow Depth and 3D Motion Estimation

C. Ye, A. Mitrokhin, C. Fermüller, JA. Yorke, and Y. Aloimonos, "Unsupervised Learning of Dense Optical Flow, Depth and Egomotion with Event-Based Sensors," IROS, 2020.

Highlights

Unsupervised Learning of Dense Optical Flow, Depth and Egomotion from Sparse Event Data

- Transfers from day to night!
- Fixes data sparsity
- Good results

http://prg.cs.umd.edu/ECN.html

II. Highlights

• A new light-weight architecture ECN

II:EV-IMO: Motion Segmentation Dataset and Learning Pipeline for Event Cameras

Ye, C., Mitrokhin, A., Fermüller, C., Aloimonos Y and Delbruck, T. "EV-IMO: Motion Segmentation Dataset and Learning Pipeline for Event Cameras." IROS, 2019.

Using motion masks to learn a pose mixture model

Our Dataset: EV-IMO

Depth from static room scan

Scan of object

Example object

Our Dataset: EV-IMO

First dataset featuring

- Pixelwise object masks
- Depth ground truth
- Object and Camera trajectories

Frames from our EV-IMO dataset: motion segmentation masks are overlaid on the grayscale image on the left, and ground truth depth and accumulated events are shown on the right image

Newest set-up:

New setup:

- 2x Prophesee 640x480 sensors (stereo)
- Samsung 640x480 sensor
- Prophesee 480x320 sensor (with grayscale)

- Better image quality
- Better calibration
- Diverse objects

Scene Motion With Event-Based Vision: Learning (II)

- First Work ever to estimate 3D Object Motion and Evaluate it.
- Supervised (mask and depth)
- Warping done on tiny subslices (closer to 3D)

http://prg.cs.umd.edu/EV-IMO.html

Comparison of full and small network (2000K Vs 40K parameters)

Event image

Ground Truth Depth

Estimated Depth

Estimated mask

EVDodge

Camera equipped with down- and front-facing DVS, down facing sonar and IMU

All computations done online on a NVIDIA TX2 CPU+GPU

N. Sanket , C.. Parameshwara , C.D.Singh, A.. Kuruttukulam , C., Fermüller, D. Scaramuzza , Y. Aloimonos . EVDodge: Embodied AI For High-Speed Dodging On A Quadrotor Using Event Cameras. ICRA, 2020

Training in Simulation Environment

Front and Down-facing simulated events

Al Navigation Stack for Dodging Objects

Event Surfaces as a Geometrical Problem

Event Data in 3D

- Motion segmentation is prone to errors when the variation in speed of objects is high
- What we observe is not the speed but the shift in pixels; it becomes greater over large intervals of time
- Objects occlude one another during motion leaving distinct artifacts in (x, y, t) space

Event Data in 3D

Z-axis translation

X/Y-axis translation

Z-axis rotation

Color = time (~2 sec.)

Mitrokhin et al. "Learning Visual Motion Segmentation Using Event Surfaces." CVPR, 2020

Graph Conv Network - Inference

no subsampling, w=0.02

Subsampling x2, w=0.3

Input Sequence

Graph Conv Network - Inference

Inference

Ground

(b)

Inference Ground

(d)

(f)

(e)

(a)

(c)

Next Steps: Develop the constraints for event-surfaces

Constraint #1:

$$0 = \begin{bmatrix} \dot{\mathbf{x}} & \dot{\mathbf{y}} & 1 \end{bmatrix}^T \cdot \begin{bmatrix} n_x & n_y & n_z \end{bmatrix} \implies \begin{bmatrix} -\frac{n_x}{n_z} & -\frac{n_y}{n_z} \end{bmatrix} \dot{x} = 1$$
Optical flow
equation:

$$A = \begin{bmatrix} 1 & 0 & -\mathbf{x} \\ 0 & 1 & -\mathbf{y} \end{bmatrix} \qquad \Omega = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}_{\mathbf{x}}^T = \begin{bmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0 \end{bmatrix}$$

$$b = \begin{bmatrix} \mathbf{x} & \mathbf{y} & 1 \end{bmatrix}^T$$

$$c = \begin{bmatrix} -\frac{n_x}{n_z} & -\frac{n_y}{n_z} \end{bmatrix}$$

$$\vec{x} = A\Omega b + (1 - cA\Omega b) \frac{AV}{cAV}$$

$$Z = \frac{cAV}{1 - cA\Omega b}$$

Collaborators

Anton Mitrokhin

ChengXi Ye

Chethan Parameshwara

