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Motion Estimation: Classical Approach
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State of the Art: Visual SLAM

LSD-SLAM (Vision Group TUM)



Issues with the Reconstruction Approach

 LIDAR/Vision: dependent on sensor and its range
* Difficulties with moving objects
* Challenges with fast changes in system motion

e Computationally expensive



Robust Visual Navigation in Nature




Visual Motion Capabilities

* Kinetic stabilization, Ego-motion
* Independent motion detection
* QObstacle avoidance

* Target pursuit
* Homing
 Landing




Image Motion Measurements

1. The motion signal from
spatio-temporal filters: normal flow
2. Events with the DVS sensor
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Motion Interpretation

| N
1. Image motion \/

or correspondence T

2. Transformation between
views (3D motion)

3. Scene geometry




3D Motion from Normal Flow




Structure from Motion

u = Uty + Urpt

1
utr=z(’z‘><(t><r))
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Classical Structure from Motion

 Established approach is the epipolar minimization: The
“derotated flow” should be parallel to the translational
flow.
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With Normal Flow only

g (t) = A(2)b
oy () = B(x)wW
fan() = 7 ) + B ()

(lun(x)[| = B(x)w - n(x)) - (A(x)t - n(x)) >0



How was it implemented ?

arg min g ZV(Xi,E,W) with (1)
V(x,t,w) =
{ 0 if (JJun(x)|| — n(x) - B(x)w) - (n(x) - A(x)t) > 0 (2)
1 if (JJun(x)|| — n(x) - B(x)w) - (n(x) - A(x)t) <0



Translational Normal Flow

* |n the case of translation each
normal flow vector constrains
the location of the FOE to a
half-plane.

possible u’s .
* Intersection of half-planes

provides FOE.



Pattern Constraints

With only sign of normal flow

VT(X,E,W) —

1 if [jup(x)]| >0, n(x) - B(x)w <0, n(x) - A(x)t <0
1 if }!un(X)” <0, n(x)-B(x)w >0, n(x) - A(x)t >0
0 otherwise



Coaxis vectors Copoint vectors

with respect to axis w = (A,B,C) with respect to point t/| |t| | = (r,s)

t P.s)

pla/c,B/C)




Coaxis pattern

translational

rotational

f/C,BFf/C)

combined
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C. Fermdller, Y. Aloimonos. Direct Perception of Three-Dimensional Motion from Patterns of Visual Motion. Science 22, 27 1995



A new implementation of the positivity
constraint

f(t,w,x) = (un(x) = n(x) - B(x)w) - (n(x) - A(x)t)

N
argmin g, Z’H(f(f, W, X;) (1)
i=1
where .
—x tx<0
H(w) = { 0 otherwise (2)

F Barranco, C Fermiiller, Y Aloimonos, E Ros. Joint direct estimation of 3D geometry and 3D motion using spatio temporal gradients. Pattern Recognition, 2020



The complete method

 Step 1: Solve iteratively in t and w the inequality using an interior
method
Iterate:

* Step 2: Solve for depth, run regularization on depth via an
inpainting method

* Step 3: Solve Least squares for t and w (given the depth)



Behavior of Error function
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Estimated path for Kitti datase

. Sequence 3
uence 2
- Sequence 1 5 Seq
10 -10
8 &0 =
L] —_
=40 E-x
E s w
w
-10 20 -40
18 .
= a
.b‘tﬂa 200 ] 200 00 o 500 500 2000 %m
: 1 1 .
) f
Lence 5
Sequence 4 2 Seq
o Sequence
0 15
-10 10
2 s
20 —
£ & % e
£, £
-6 A0
40 A 18
20
sazm Q 400 600 ‘aa-s e 200 ] 200
E : ; i)
Sequence d
Sequence 7 5 a0
5 20
s
10
8 g
o 2 — o
= = -0
E 1 £
z 8 :
s 4 2
2 )
R T 5 0 & T K
i)
Sequence 10
20
10
L]
£
20
-0 ——— Groudlun
" 20 ——— Poasva depth
200 L] ] 200 00 [ 200 4‘$ﬂh] 800 800 ——— Depth mconsmucted






il

.\\a
X\ = S
..ss\\\\\\\/,

2,

. \
\\_

=

l

({0

(0

\\ \

(@) C
o 9
= n
Q 35
@)



”W//////////////////////// {;___

\\\\\\\\\\\\\\U((( Il /gf//

f-l"
"
4,2
@ : ‘1\.“
i
o

Y




The Dynamic Vision Sensor

DVS: An asynchronous differential camera
Events with +1 or -1 polarity are emitted when the change

in log intensity exceeds a predefined threshold:

log(7) 4
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The Dynamic Vision Sensor

DVS: An asynchronous differential camera
Events with +1 or -1 polarity are emitted when the change

in log intensity exceeds a predefined threshold:

L

log (1) !

LN

. —

ev(p, t)I /
t

Event = {x,y,timestamp,polarity}

A\

No motion blur



The Dynamic Vision Sensor

DVS: An asynchronous differential camera

High dynamic
range

List of resources on Event-Based vision:
https://github.com/uzh-rpg/event-based vision resources
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Fast events aid in segmentation PRG




Stepping Feet Illusion



Variation of Stepping Feet Illlusion



Variation of Stepping Feet Illlusion



Simulation 2




Overview

1.
V.
VI.

Optimization approach for event alignment

Self-supervised deep learning for motion estimation and
segmentation

EV-IMO Dataset
EVDodge: Motion detection as input to control dodging
Motion segmentation in full 3D



Properties of this sensor

+ High temporal resolution
+ High dynamic range

+ Low Bandwidth signal

+ Low latency

- High noise



|. Egomotion+ Independent Motion




What is the problem?

 All the components are related.

Computer Vision Laboratory






Treat events as point clouds

s Fe WD

Warp field @(dz,dy,dr,dy) : (z,y,t) = (z + uvAl,y + vALt)

dz,dy  Shift inx and y

dr, dg Radial expansion, and rotation around z-axis
Derived from divergence and curl



Approximation of 3D Motion Estimation
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fronto-parallel plane



How to compute it?

* Density (from Event Count image)

G ={{z, vt} {2y, 0 e Ci=2, j =y}
J— ZLJ‘&!,?'
b=

Sum of events over all pixels / Number of occupied pixels

* Average time (from Time Stamp image)

, 1 _
Ej:sztltt—_{ij



Event-based Moving Object Detection and Tracking

Idea:

1) Warp the 3D events according to a motion
model: 4-parameter {x-y-z-roll}

2) Downproject all 3D events on a camera
plane

3) [Each pixel is the average of the event
timestamps

4) Compute error gradients on the image

5 Goto (1)

Then, detect points which do not conform to a 4-
parameter model

http://prg.cs.umd.edu/BetterFlow.html
A Mitrokhin, C Fermdiller, C Parameshwara, Y Aloimonos. Event-based moving object detection and tracking, IROS 2018.




Dataset

O) ©

A4
PRG

Fast motion, Multiple Objects, Lighting Variations, Occlusion
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Results PRG
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Algorithm PRG

Misaligned event extraction and

object detection

- ™

3D representation of the
event slice

minimizer
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Improved Segmentation
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(a) event cloud (b) after global motion compensation (c) Sparse tracklets on compensated event
cloud, (d) Merged feature clusters (e) Output

C. Parameshwara, N. Sanket, C.Singh, C. Fermdiiller, Y. Aloimonos: Zero-Shot Multi-Motion Segmentation With a Monocular Event Camera. arXiv



Angles
Small

Large

Velocity

Rotational Speed




Replace Optimization with Learning:
I: Flow Depth and 3D Motion Estimation

() ()

u -1 0 =z ry —-1-—-12% y
= L +
Z Uy Wy
v 0 -1 y 1+ 2 -y -
\/Uz) /(UJZ)

flow depth translation 3D motion rotation

Pose Network
1
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C. Ye, A. Mitrokhin, C. Fermdiller, JA. Yorke, and Y. Aloimonos, “Unsupervised Learning of Dense Optical Flow, Depth and Egomotion with Event-Based Sensors,” IROS,
2020.
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Highlights

Unsupervised Learning of Dense Optical Flow, Depth and Egomotion
from Sparse Event Data

— Ground Truth
== Depth-Scaled
w—  GT-Scaled

o Transfers from day to night! |
o Fixes data sparsity ; \
o Good results

http://prg.cs.umd.edu/ECN.html




Il. Highlights

* A new light-weight architecture ECN

Feedback
——

Level 1 Features
Generation

Level 1 Features!?

Level 1 Features (2! Level 3 Features

Prediction



Flow Flow Depth Depth
Event Input Ground Truth  Network Output Ground Truth  Network Output
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II:EV-IMO: Motion Segmentation Dataset and Learning Pipeline for
Event Cameras

Optical Flow

o Lo Jo2 - ]l

Pose Mixture Model

Ye, C., Mitrokhin, A., Fermiiller, C., Aloimonos Y and Delbruck, T. "EV-IMO: Motion Segmentation Dataset and Learning Pipeline for Event Cameras.” IROS, 2019.



Using motion masks to learn a pose mixture
model|
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Our Dataset: EV-IMO Example object

Object Z.._ase link
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Depth from static room scan Scan of object



Our Dataset: EV-IMO First dataset featuring

- Pixelwise object masks
- Depth ground truth
«  Object and Camera trajectories

Frames from our EV-IMO dataset: motion segmentation masks are overlaid on the grayscale image on

the left, and ground truth depth and accumulated events are shown on the right image



Newest set-up:

New setup:
« 2x Prophesee 640x480 sensors (stereo) « Better image quality
« Samsung 640x480 sensor « Better calibration
« Prophesee 480x320 sensor (with - Diverse objects

grayscale)



Scene Motion With Event-Based Vision: Learning (ll)

® First Work ever
to estimate 3D
Object Motion
and Evaluate it.

® Supervised
(mask and
depth)

e Warping done on
tiny subslices
(closer to 3D)

http://prg.cs.umd.edu/EV-IMO.html




Comparison of full and small network
(2000K Vs 40K parameters)

full

small

Event image Ground Truth Depth Estimated Depth Estimated mask



Results




EVDodge

Camera equipped with down- and front-facing DVS, down facing sonar and IMU
All computations done online on a NVIDIA TX2 CPU+GPU

N. Sanket , C.. Parameshwara, C.D.Singh, A.. Kuruttukulam , C., Fermdiiller, D. Scaramuzza, Y. Aloimonos .
EVDodge: Embodied Al For High-Speed Dodging On A Quadrotor Using Event Cameras. ICRA, 2020



Training in Simulation Environment

Front and Down-facing simulated events




Al Navigation Stack for Dodging Objects

EVDeblurNet

EVDeblurNet

%F EVSegFlowNet
t+1




i ~ |Front Camera
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Event Surfaces as a Geometrical Problem




Event Data in 3D

« Motion segmentation is prone to errors when the variation in speed of
objects is high
« What we observe is not the speed but the shift in pixels; it becomes greater

over large intervals of time
« Objects occlude one another during motion - leaving distinct artifacts in

(x,y,t) space
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Event Data in 3D

Z-axis translation
X/Y-axis translation Z-axis rotation

Color = time (~2 sec.)



Corner region due to
occlusion

Learning Segmentation in (x,y,t)

t

GraphConv1 GraphConv2
* A ,’ > A ," I~

R %2 x

L Xy 2 .

L ,,‘: =) TR ,,‘: tc F

& KTp & %7 3 ;
fa 7 fa 7 :

¥ 7

tj(t) - corner region
corresponding to point motion

Temporal
Augmentation -

Preprocessing:
- Filtering (radius outlier)
- Normal estimation
- Subsampling
- Graph computation

Mitrokhin et al. “Learning Visual Motion Segmentation Using Event Surfaces.” CVPR, 2020



Graph Conv Network - Inference

=0.02

no subsampling, w

=0.1

Subsampling x2, w:

ground truth

inference

ground truth

inference

=0.3

no subsampling, w

=0.3

Subsampling x2, w:



Graph Conv Network - Inference

Inference Ground Inference Ground
- - 5 r T "« 1 - 3
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(b)
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Input Sequence

(e) (f)



Next Steps:
Develop the constraints for event-surfaces

Optical Flow
(tangential to surface)

Constraint #1: % 5 ]
T
0= [x y 1] ' [nw Ny nZ] = [—Z: —::’] T =
. ) V
Optical flow T =AQb+ ) { ]
equation: 0 Surface Normal
1 0 —x o
4= {0 1 —y} A=l el = A ol}
= [x y 1}T
o= [ ]
AV (‘AV
. _ B 7 —
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