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SURREY Introduction to anomaly

m Anomaly -

= an important notion in human
understanding of the environment

m deviation from normal order or rule
m failure to relate sensor data to a meaning
s manifest in weak or no support for domain
specific hypotheses
m Many synonyms signifying different
nuances

m rarity, irregularity, incongruence,
abnormality, unexpected event, novelty,
innovation, outlier
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SURREY Diverse applications

m Many applications formulated as anomaly
detection problems
m surveillance
m hovel object detection
s abnormal communication network activity
m medical diagnostics
m video segmentation
m suspicious behaviour
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SURREY Classical anomaly model

m In science/engineering
m prove disprove hypothesis
= fault detection
s outdated model requires adaptation

m Conventional mathematical model

m outlier of a distribution

m empirical distribution deviates from
the model distribution
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SURREY  Prior art in anomaly detection

m Edgeworth (1888)
m Hundreds of papers

m Many approaches
m statistical, NN, classification, clustering, information
theoretic, spectral
m Excellent surveys
s Markou&Singh (SP 2003, statistical, neural)
s Hodge&Austin (Al Review 2004)
s Agyemang&Barker&Alhajj (Int Data Anal 2006)
s Chandola&Banerjee&Kumar (ACM Surveys 2010)
m Saligrama&Konrad&Vodoin (SPM2010, video)



v of Classical _model and its critique
(re machine perception)

m Multiple models

m Discriminative classifiers

m Ambiguity of interpretation
m Contextual reasoning

m Hierarchical representation

m Data quality o
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sy Data quality/
decision confidence

/‘ m Data quality

m effect of noise on the notion of
normality

m need to measure data quality

= notion of data quality and its
,* dependence on context

m Confidence in classifier output
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oy LpERsYr Incongruence/unexpected
event

m Magritte’s La duree poignhard

m Model base pruning
s Computational efficiency

m Hierarchical representation
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HURREY  Different aspects of anomal

-Distribution drift
-Novelty detection
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Data quality
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Proposed anomal
detection system
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SURREY Nuances

No anomaly -
Noisy measurement
Unknown object O
Corrupted

measurement o

Congruent labelling
Unknown structure

Spurious
measurement errors

of anomaly

Unexpected structural
component

Unexpected structural
component & structure

Measurement model
drift
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m Detecting differences between observations and
expectations (anomaly, rare event,
incongruence)

m Basic principle — comparison of outputs of weak
and strong classifiers (Ketabdar et al 2007)

m Dirac Project (Burget et al 2008, Weinshall et all
[2009-2012])

m Exemplified by out-of-vocabulary word detection
s Phoneme recognizer (weak classifier)
m HMM speech recognizer (strong, contextual classifier)
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SURREY Classifier incongruence

m Testing for incongruence
m heed an incongruence measure
m understand its properties
m sensitivity to noise

m Bayesian surprise

~
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(a) Observation from subsystem 1 (expert)

(wjlz) 7
fz(wj\a:) classifier 1 output B |2)
P(wj |:l:) classifier 2 output P s s

(b) observation from subsystem 2 (assumption)
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U A Novel surprise measure

m Bayesian surprise has undesirable
properties
m Decision agnostic
m Values from [0,00]
m Difficult to set confidence level threshold
s Complex dependence on errors

m Modified measure of surprise
Amaz = 3“P(V,u|;r) — P(p|x)| + |P(p|x) — P(p|x)|]

m Sensitivity to estimation errors investigated
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SURREY Estimation errors

m Class probabilities corrupted by
noise

A

P(w|x) = P(w[x) + 1., (x)

m satisfying m

Z Nw(x) =0

)

0 <n,(x)+ Plwx) <1



anvesiry oF Error sensitivity of
Incongruence measures

pdf(Bayesian Surprise)

SURREY
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= SURREY  New object class detection

m Works well in biometrics GeneralLevel QDSZL
m Hierarchical object category — —
representation (Weinshall Spedfciere gl ubclass 2
PAMI 2012) i
m Detection based on
incongruence between Road
general and specific classifier
outputs g o
| [ Objects ] ' W ;: so
[ Motorbikes ] "
| [ sot ]| o ME_ HE _ml =
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m Abstract vehicle hierarchy versus visual hierarchy

m Road transport Air transport
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Results
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SURREY Visual object hierarchy

m Oxford flower data set
m General classifier based on spectral properties
m SIFT descriptor class specific classifiers |
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m Specific classifier performance
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Application to sports video annotation

m Aim is to interpret tennis video from the
observed visual events

m [he states are:

m 1st serve 7L ISPOR T}
TODaY

= 2"d serve e

m Ace

s Rally

m Point award
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File

The tennis annotation system

Match tree

¥ Match 0
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SURREY Testing on tennis doubles

m Transfer learning — mechanisms
= Anomaly detection
= Visual event — anomaly association
s Model adaptation
m Context classifier

12//:{//SPORT]
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m Mechanisms needed for system
competence extension
= Anomaly detection
= Visual event — anomaly association
s Model adaptation
m Context classifier
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U #players detection
MD(p(:E),ﬁ(a:)) — arg mgXp(x) — arg m:?xﬁ(x)

Singles
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TENNIS VIDEOS USED IN EXPERIMENTS AND THEIR DURATION
Label Tennis match Duration # play
(minutes) shots
AO3WS AustraliaO3 Women’s Singles 35 76
AO3MS AustraliaO3 Men’s Singles 65 143
JOOWS Japan09 Women’s Singles 60 100
AO8WD AustraliaO8 Women’s Doubles 122 164
UO6WD USAO06 Women’s Doubles 47 66
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Train with AOBWS+J09WS

detected anomalies (% of shots)

NOISE STATISTICS 100 4 —$=—0—0¢—0¢—¢
90
Video | mean +std 80/
- - 70
AO3WS | 10£01 | ”
AO3MS | 3.1£23 | « = O il
J09WS l . 6 :l: O 5 40r 4 AO3MS (singles)
- - 30
AOSWD | 1.3+ 1.0 ol
UO6WD | 1.5+ 1.9 10; ., f
00 “1H”H‘W”:”””"”'”' 8 15 Train with AOSWS+A03MS
00 Train with AOSMS+J09WS . buffer size (in shots) 100 a WI‘ + o
90l 90+
80f § Y
(7]
ol 5 70
60+ 9:“ 6or
2 '=@=' AOBWD (doubles)
50( e ((2332122)) s —e— UOBWD (doubles)
il A AO3WS (singles) g 4o/ A JOIWS (singles)
30} 8 30
sl S gl
©
10f el
0 A A A A A A A A A 0 Y S ey S e N CINE
o 2 T 4 7 &8 8 10 0 2 “ 6 8 10
buffer size (in shots) buffer size (in shots) 31



I SURREY Out-of-play anomaly detection
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Notation Event type

net 4 nall

hit 4 pall
bounce_1n 4 vall
bounce_outy ball

hit by player 4

bounces 1n play area s
bounces outside play areay

played by player 4 hitting the net

Serve 4 serve delivered by player 4
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SURREY  Anomalous ball event detection

m Anomaly detected as incongruence
between contextual-noncontextual
Interpretation

H
OB

/\ Termination

Hp  event

O O o) o o
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m The proposed measure of surprise in a
two class case

Amaz = |P(6; = wlxi, 6i-1) — P(0; = w|Xit1, -, Xia)|
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SURREY Conclusions

m Novel anomaly detection system
m Incongruence detector
m Decision confidence filter
m Data quality assessment
s Computationally efficient outlier detector

m Proposed novel decision incongruence
measure
m Applied to

m hovel object class detection
s anomaly detection in tennis video analysis
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