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Introduction to anomaly  

n  Anomaly –  
n  an important notion in human 

understanding of the environment 
n  deviation from normal order or rule 
n  failure to relate sensor data to a meaning 
n  manifest in weak or no support for domain 

specific hypotheses 

n  Many synonyms signifying different 
nuances 
n  rarity, irregularity, incongruence, 

abnormality, unexpected event, novelty, 
innovation, outlier  
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Diverse applications 

n  Many applications formulated as anomaly 
detection problems 
n  surveillance 
n  novel object detection 
n  abnormal communication network activity 
n  medical diagnostics 
n  video segmentation 
n  suspicious behaviour 

4 



Classical anomaly model 

n  In science/engineering 
n  prove disprove hypothesis 
n  fault detection 
n  outdated model requires adaptation 

n  Conventional mathematical model 
n  outlier of a distribution 
n  empirical distribution deviates from 

the model distribution 
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Prior art in anomaly detection 

n  Edgeworth (1888) 
n  Hundreds of papers 
n  Many approaches 

n  statistical, NN, classification, clustering, information 
theoretic, spectral 

n  Excellent surveys 
n  Markou&Singh (SP 2003, statistical, neural) 
n  Hodge&Austin (AI Review 2004) 
n  Agyemang&Barker&Alhajj (Int Data Anal 2006) 
n  Chandola&Banerjee&Kumar (ACM Surveys 2010) 
n  Saligrama&Konrad&Vodoin (SPM2010, video) 
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Classical model and its critique 
(re machine perception) 

n  Multiple models 
n  Discriminative classifiers 
n  Ambiguity of interpretation 
n  Contextual reasoning 
n  Hierarchical representation 
n  Data quality 
n  Model pruning 
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Data quality/ 
decision confidence 
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n  Data quality 
n  effect of noise on the notion of 

normality 
n  need to measure data quality 
n  notion of data quality and its 

dependence on context 
n  Confidence in classifier output 



Incongruence/unexpected 
event 
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n  Magritte’s La duree poignard 
n  Model base pruning 

n  Computational efficiency 
n  Hierarchical representation 
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Different aspects of anomaly 
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Different aspects of anomaly 
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-Distribution drift 
-Novelty detection 



Data quality 
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Data quality 
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Proposed anomaly 
detection system 
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Nuances of anomaly 

n  No anomaly 
n  Noisy measurement 
n  Unknown object 
n  Corrupted 

measurement 
n  Congruent labelling 
n  Unknown structure 
n  Spurious 

measurement errors 
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n  Unexpected structural 
component 

n  Unexpected structural 
component & structure 

n  Measurement model 
drift 



Incongruence detection 

n  Detecting differences between observations and 
expectations (anomaly, rare event, 
incongruence) 

n  Basic principle – comparison of outputs of weak 
and strong classifiers (Ketabdar et al 2007) 

n  Dirac Project (Burget et al 2008, Weinshall et all 
[2009-2012]) 

n  Exemplified by out-of-vocabulary word detection 
n  Phoneme recognizer (weak classifier) 
n  HMM speech recognizer (strong, contextual classifier) 
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Classifier incongruence 

n  Testing for incongruence 
n  need an incongruence measure 
n  understand its properties 
n  sensitivity to noise 

n  Bayesian surprise 

n         classifier 1 output  
n          classifier 2 output 
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Novel surprise measure 

n  Bayesian surprise has undesirable 
properties 
n  Decision agnostic 
n  Values from [0,∞] 
n  Difficult to set confidence level threshold 
n  Complex dependence on errors  

n  Modified measure of surprise 

n  Sensitivity to estimation errors investigated 
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Estimation errors 

n Class probabilities corrupted by 
noise 

 
 
n  satisfying 
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Error sensitivity of 
incongruence measures 
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Scenario 
•  Identical class probabilities 
•  Estimation error st.dev 0.05  



New object class detection  
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Objects 

Motorbikes 

Cross Sport Road 

Background 

n  Works well in biometrics 
n  Hierarchical object category 

representation (Weinshall 
PAMI 2012) 

n  Detection based on 
incongruence between 
general and specific classifier 
outputs 



New object class detection 

n  Abstract vehicle hierarchy versus visual hierarchy 

n  Road transport                     Air transport 
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Transport vehicle 
confusion matrix 
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Visual object hierarchy 

n  Oxford flower data set 
n  General classifier based on spectral properties 
n  SIFT descriptor class specific classifiers 
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Flower confusion matrix 
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n Specific classifier performance 
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Application to sports video annotation 

n  Aim is to interpret tennis video from the 
observed visual events  

n  The states are: 
n  1st serve 
n  2nd serve 
n  Ace 
n  Rally 
n  Point award  
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The tennis annotation system 



Testing on tennis doubles 

n  Transfer learning – mechanisms 
n  Anomaly detection 
n  Visual event – anomaly association 
n  Model adaptation 
n  Context classifier 
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Background  

  
n  Mechanisms needed for system 

competence extension 
n  Anomaly detection 
n  Visual event – anomaly association 
n  Model adaptation 
n  Context classifier 

 



#players detection 
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# player anomaly detection 
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Out-of-play anomaly detection 
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Out-of-play anomaly detection 
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Anomalous ball event detection 
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n  Anomaly detected as incongruence 
between contextual-noncontextual                   
interpretation  



n  The proposed measure of surprise in a 
two class case 
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2008 Ground Truth Anomaly Triggering Events (27/176)
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Conclusions 

n  Novel anomaly detection system 
n  Incongruence detector 
n  Decision confidence filter 
n  Data quality assessment 
n  Computationally efficient outlier detector 

n  Proposed novel decision incongruence 
measure 

n  Applied to  
n  novel object class detection 
n  anomaly detection in tennis video analysis 
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