

Solving Perception Uncertainty Problems in Robotics

Prof. Alberto Sanfeliu Director Institut de Robòtica i Informàtica Industrial (UPC-CSIC) http://www.iri.upc.edu

Barcelona, 15 February 2013

Overview

- Problem statement
- Solving perception uncertainty using probabilistic models:
 - Robot localization and navigation
 - Grasping deformable objects
 - Taken care of plants
 - Assembly with aerial robotics
- Solving perception uncertainty using probabilistic and un/supervised learning models in the loop:
 - Online Human-Assisted Learning using Random Ferns
 - Human Motion Prediction to Accompany People

Problem Statement

- **Robot environment** are inherently unpredictable. The uncertainty is particularly high for robot operating in the proximity of people
- Sensors are limited in what they can perceive and they are subject to noise.
- Robot actuation involves actuators (motors,...) and motion elements (wheels, legs, ...) which produces sometimes unpredictable movements (for example due to dead reckoning)
- **Robot tasks** with people are inherently unpredictable, due to the aforementioned issues and the people task behavior

Robot localization and navigation (FP6 URUS project)

The perception uncertainty is due to sensors and data association

Manipulation and grasping of objects (FP7 GARNICS and IntellAct projects)

Taken care of plants (FP7 GARNICS project) Manipulating deformable objects (FP7 IntellAct project)

The perception uncertainty is due to sensor information and robot manipulation

Aerial assembly by robots (FP7 ARCAS project)

Transporting structures

Assembly structures

The perception uncertainty is due to sensor, robot actuation and robot task

Human Robot Interaction (FP6 URUS and RobTaskCOOP projects)

The uncertainty is due to sensor, robot actuation, person behavior

General Multimodal Scheme

Solving Perception Uncertainty using Probabilistic Models

General Multimodal Scheme

Solving Perception Uncertainty in Robot Localization and Navigation Tibi and Dabo

Tibi & Dabo Robots

HRI sensors Navigation Sensors

[Corominas, Mirats, Sanfeliu, 2008] [Sanfeliu et. al., 2010] [Trulls et al., 2011]

Autonomous Navigation Framework

Institut de Robòtica i Informàtica Industrial

Obstacle Avoidance Diagram

Inputs: **Outputs:** $\overline{o_{L_{H}}^{t'}}, l_{H}$ Front horizontal Laser O TRAVERSABILITY **INFERENCE** 0 Front vertical Laser ►V MOTION Platform t' $\boldsymbol{O}_{L_{H}}$ CONTROLLER commands ►W X^{r} Goal position in local frame LOCAL g PLANNER X^{r} \boldsymbol{O}_{U}^{t} Odometry data

FREE Goal position in local frame

Obstacle Avoidance: Traversability Inference

Videos

Institut de Robòtica Videos_pruebas\Tibi_Navegando_BRL_2010_WMV V9_002.wmv

UPC

CSIC

Solving Perception Uncertainty in Deformable Object Grasping

Objective

Objective

Using depth and appearance features for informed robot grasping of highly wrinkled clothes

[Ramisa, Alenya, Moreno, Torras, 2012]

[Monso, Alenya, Torras, 2012]

Method

In order to handle the large variability a deformed cloth may have, we build a Bag of Features based detector that combines appearance and 3D geometry features. An image is scanned using a sliding window with a linear classifier, and the candidate windows are refined using a non-linear SVM and a "grasp goodness" criterion to select the best grasping point. For this work we have used polo shirt collars as test cloth part.

Video

Arnau Ramisa, Guillem Alenyà, Francesc Moreno-Noguer, Carme Torras Special thanks to: Pol Monsó

International Conference on Robotics and Automation (ICRA) 2012

Institut de Robòtica i Informàtica Industrial

www.iri.upc.edu

Solving Perception Uncertainty in Taken Care of Plants

Objective

Objective

Using ToF and color cameras to segment plant images into their composite surface patches by combining hierarchical color segmentation with quadratic surface fitting using ToF depth data.

[Alenya, Dellen, Foix, Torras, 2012] [Alenya, Dellen, Torras, 2011]

European project GARNICS (Gardening with a Cognitive System)

WARN Robot with a ToF camera

Color image

Point cloud

The process consists of three stages.

- First, color and depth images are acquired and combined to obtain a colored point cloud.
- Second, the different leaves are segmented from the point cloud, and a plane or a quadratic surface is fitted to each of them. The surface model provides the position and orientation of each leaf. This first segmentation may contain some errors, e.g., several superimposed leaves may fall in the same region, and regions including few points may lead to a relatively large fitting error.
- Third, using the position and orientation of the best leaf candidate, the robot moves the camera system closer to it to obtain a more detailed view, which is used to obtain a better model and eventually separate different leaves.

Experimental results for different views of plants. A Color image first view (upper left panel). Sparse depth with segment boundaries (middle upper panel). Fitted depth (right upper panel). Color image close view (lower left panel). Sparse depth with segment boundaries of close view (middle lower panel). Fitted depth of selected segment (right lower panel). The selected segment is marked in red in the color images. A schematic showing the robot base position (0), the initial camera position (1), the leaf position (2) and the computed target position of the camera to capture the second viewpoint (3) are shown in the left panel. Distances are given in meters.

Video

Video

Solving Perception Uncertainty in Aerial Robot Applications

Aerial Robotics Cooperative Assembly System (ARCAS)

Institut de Robòtica i Informàtica Industrial

ARCAS Objectives:

Development and experimental validation of the **first cooperative free-flying robot system** for assembly and structure construction

Application Scenarios

Flying + Manipulation + Perception + Multi-robot Cooperation

Video

3D Object Tracking

- The 3D object tracking component involves the identification and tracking of objects using on-board cameras in aerial robots.
 - *FeatureDetection:* This component localizes and identifies relevant features in the input image for object detection and tracking.
 - *3DPoseEstimation-Tracking:* Using the information concerning to image features, provided by the FeatureDetection component, this component estimates the pose of assembly objects and tracks their image features during the assembly task and transportation.
 - *3DVisualServo:* This component is used to perform visual servoing in flying robots using the estimated object pose and the tracked features given by the 3DPoseEstimation-Tracking component.

Factors that Provoke Uncertainties

Environment conditions:

- Wind
- Lighting changes (due to clouds, the hour of the day, etc.)
- · Shadows (cast shadows, etc.)

Object/scene appearance:

- 3D rotations and translations
- Scale variations
- Perspective projections
- · Cluttered background
- Surface reflections and color variations

• Aerial robot platform:

- · Camera pose
- · Camera lens
- · Vibrations
- Real time processing
- Cooperative delay of the information
- Task:
 - Partial occlusions
 - Relative pose between components to be assembly

Bar Detection During Assembly Operations

Onboard Camera

Visual marks: Outdoor challenges

Vibrations, noise outdoor and cluttered background

Video: Visual Marks in Indoor

The (uncalibrated) PnP Problem

- Given: 2D/3D correspondences
- We want: Compute camera pose + focal length

Introducing Control Points

3D Pose Estimation: the UPnP

Independent detection in every frame.

3D Pose Estimation: the UPnP

Solving Perception Uncertainty using Probabilistic Models and un/supervised learning models in the loop

General Multimodal Scheme

Solving Perception Uncertainty in Online Human-Assisted Learning using Random Ferns

Motivation

Robot TIBI learns and improves its visual perception capabilities by means of interactions with humans

Robot TIBI

Robot TIBI

[Villamizar, Moreno, Andrade, Sanfeliu, 2010][Villamizar, Andrade, Sanfeliu, Moreno, 2012][Villamizar, Garrell, Sanfeliu, Moreno, 2012]

Objective

Robot TIBI learns to recognize faces and objects using human assistance

Objective

Robot TIBI learns to recognize faces and objects using human assistance

Face Recognition

Objective

Robot TIBI learns to recognize faces and objects using human assistance

Face Recognition

Faces

Object Recognition

3D Objects

Robot TIBI learns to recognize faces and objects using human assistance

Face Recognition

Institut de Robòtica i Informàtica Industrial **Object Recognition**

Faces

3D Objects

Online Human-Assisted Learning

Human-Robot Interaction

Online Human-Assisted Learning

Human-Robot Interaction

Recognition Results

Online Learning: The visual system is updated continuously using its own detection hypotheses

Online Human-Assisted Learning

Human-Robot Interaction

<u>Human-Assisted Learning:</u> The visual system requires the human intervetion

Online Human-Assisted Learning

Human-Robot Interaction

Online Human-Assisted Learning

Human-Robot Interaction

Difficult Cases

Online Human-Assisted Learning

Human-Robot Interaction

Training/Testing

Approach

Object Hypothesis

• Object hypotheses: detections given by the classifier

Training/Testing

Approach

Object Hypothesis

• Object candidate: highest-confidence hypothesis (detection)

Training/Testing

Approach

Object Hypothesis

• New samples: positive and negative samples

Training Step

Training Step

UPC

Testing Step

Testing Step

Testing Step

Video: Robot Tibi Interacting with People for Face Learning

Solving Perception Uncertainty in Human Motion Prediction to Accompany People

Robot Companion

Objective:

To accompany people in urban areas maintaining a specific distance and an angle.

Perception uncertainty problems:

- Detection of the person to be accompany
- Tracking the person
- Tracking other people and predicting their motion

[Garrell and Sanfeliu, 2012]

CSIC
Robot Accompanying a Person in Dense Urban Area

Conclusions

- Robots must deal with uncertainty in perception and robot actuation problems in real life tasks
- There is not a unique way to solve uncertainty perception problems, but a multimodal scheme allows to solve a great diversity of problems
- Human in the loop allows to improve perception and robot behavior results

References

A. Peñate, J. Andrade-Cetto and F. Moreno-Noguer. Exhaustive linearization for robust camera pose and focal length estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, to appear.

M. Villamizar, J. Andrade-Cetto, A. Sanfeliu and F. Moreno-Noguer. Bootstrapping boosted random Ferns for discriminative and efficient object classification. Pattern Recognition, 45(9): 3141-3153, 2012.

A. Garrell Zulueta and A. Sanfeliu. Cooperative social robots to accompany groups of people. The International Journal of Robotics Research, 31(13): 1675-1701, 2012.

A. Ramisa, G. Alenyà, F. Moreno-Noguer and C. Torras. Using depth and appearance features for informed robot grasping of highly wrinkled clothes, 2012 IEEE International Conference on Robotics and Automation, 2012, St. Paul, Minnesota, USA, pp. 1703-1708, IEEE.

References

M. Villamizar, A. Garrell Zulueta, A. Sanfeliu and F. Moreno-Noguer. Online human-assisted learning using random ferns, 21st International Conference on Pattern Recognition, 2012, Tsukuba, Japan, pp. 2821-2824, IEEE Computer Society.

P. Monsó, G. Alenyà and C. Torras. POMDP approach to robotized clothes separation, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, Vilamoura, Portugal, pp. 1324-1329, IEEE.

G. Alenyà, B. Dellen, S. Foix and C. Torras. Robotic leaf probing via segmentation of range data into surface patches, 2012 IROS Workshop on Agricultural Robotics: Enabling Safe, Efficient, Affordable Robots for Food Production, 2012, Vilamoura, Portugal, pp. 1-6.

E. Trulls Fortuny, A. Corominas Murtra, J. Perez, G. Ferrer, D. Vasquez, J. M. Mirats Tur and A. Sanfeliu. Autonomous navigation for mobile service robots in urban pedestrian environments. Journal of Field Robotics, 28(3): 329-354, 2011.

References

G. Alenyà, B. Dellen and C. Torras. 3D modelling of leaves from color and ToF data for robotized plant measuring, 2011 IEEE International Conference on Robotics and Automation, 2011, Shanghai, pp. 3408-3414, IEEE.

M. Villamizar, F. Moreno-Noguer, J. Andrade-Cetto and A. Sanfeliu. Efficient rotation invariant object detection using boosted random Ferns, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, San Francisco, pp. 1038-104

A. Sanfeliu, J. Andrade-Cetto, M. Barbosa, R. Bowden, J. Capitán, A. Corominas Murtra, A. Gilbert, J. Illingworth, L. Merino, J. M. Mirats Tur, P. Moreno, A. Ollero, J. Sequeira and M.T. Spaan. Decentralized sensor fusion for ubiquitous networking robotics in urban areas. Sensors, 10(3): 2274-2314, 2010.

A. Corominas Murtra, J. M. Mirats Tur and A. Sanfeliu. Action evaluation for mobile robot global localization in cooperative environments. Robotics and Autonomous Systems, 56(10): 807-818, 2008.

Thank You

