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Solving Perception Uncertainty 

Problems in Robotics 



Overview 

 Problem statement 

 Solving perception uncertainty using probabilistic 
models:  

 Robot localization and navigation 

 Grasping deformable objects 

 Taken care of plants 

 Assembly with aerial robotics 

 Solving perception uncertainty using probabilistic 
and un/supervised learning models in the loop:  

 Online Human-Assisted Learning using Random Ferns 

 Human Motion Prediction to Accompany People 



Problem Statement 

 Robot environment are inherently unpredictable. 
The uncertainty is particularly high for robot 
operating in the proximity of people 

 Sensors are limited in what they can perceive and 
they are subject to noise. 

 Robot actuation involves actuators (motors,…) 
and motion elements (wheels, legs, …) which 
produces sometimes unpredictable movements (for 
example due to dead reckoning) 

 Robot tasks with people are inherently 
unpredictable, due to the aforementioned issues 
and the people task behavior 



Some Robotic Challenges 

Robot localization and navigation (FP6 URUS project) 

The perception uncertainty is due to sensors and data association  



Some Robotic Challenges 

Manipulation and grasping of objects (FP7 GARNICS and 
IntellAct projects) 

 

Taken care of plants 

(FP7 GARNICS project) 

Manipulating deformable objects 

(FP7 IntellAct project) 

The perception uncertainty is due to sensor information and robot manipulation 



Some Robotic Challenges 

Aerial assembly by robots (FP7 ARCAS project) 

Assembly structures 

Transporting structures 

The perception uncertainty is due to sensor, robot actuation and robot task 



Some Robotic Challenges 

Human Robot Interaction (FP6 URUS and 
RobTaskCOOP projects) 

The uncertainty is due to sensor, robot actuation, person behavior 
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Solving Perception Uncertainty 
using Probabilistic Models 
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Solving Perception Uncertainty in 
Robot Localization and Navigation 

Tibi and Dabo 



Tibi & Dabo Robots 

Front Vertical Hokuyo Laser Scanner 

Back Horizontal Leuze Laser Scanner 

Front Horizontal Leuze Laser Scanner 

Wheel encoders (2D odometry) 

Bumblebee Stereo Camera 

Touch Screen 

HRI sensors 
Navigation Sensors 

[Sanfeliu et. al., 2010] [Trulls et al., 2011] 

[Corominas, Mirats, Sanfeliu, 2008] 
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 Reactive Loop, 10Hz  (local coord. frame) 

Deliberative Loop, 3Hz (map coord. frame) 

Autonomous Navigation Framework 



Obstacle Avoidance Diagram 

Front horizontal Laser 

Goal position in  

local frame 

Odometry data 

Platform  

commands 

Front vertical Laser 
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FREE Goal position in  

local frame 



Obstacle Avoidance: Traversability Inference 

 

 Two situations where Traversability 

 Inference is required (ramp zones) 

 

 Extraction of vertical regression 

 line from vertical laser data to 

 detect ramps 

 

Vert. laser Hori. laser 



Videos 

Videos_pruebas\Tibi_Navegando_BRL_2010_WMV V9_002.wmv 

Videos_pruebas/Tibi_Navegando_BRL_2010_WMV V9_002.wmv
Videos_pruebas/Tibi_Navegando_BRL_2010_WMV V9_002.wmv
Videos_pruebas/Tibi_Navegando_BRL_2010_WMV V9_002.wmv


Solving Perception Uncertainty in 
Deformable Object Grasping 



Objective 

Objective 

 

Using depth and appearance 

features for informed robot 

grasping of highly wrinkled 

clothes 

 

[Ramisa, Alenya, Moreno, Torras, 2012] 

[Monso, Alenya, Torras, 2012] 



Method 

Method 

 

In order to handle the large variability a deformed cloth may have, we build 

a Bag of Features based detector that combines appearance and 3D 

geometry features. An image is scanned using a sliding window with a 

linear classifier, and the candidate windows are refined using a non-linear 

SVM and a “grasp goodness” criterion to select the best grasping point. For 

this work we have used polo shirt collars as test cloth part. 



Video 



Solving Perception Uncertainty in 
Taken Care of Plants 



Objective 

Objective 

 

Using ToF and color 

cameras to segment plant 

images into their composite 

surface patches by 

combining hierarchical 

color segmentation with 

quadratic surface fitting 

using ToF depth data.  
 

[Alenya, Dellen, Foix, Torras, 2012] 

[Alenya, Dellen, Torras, 2011] 



WARN Robot with a ToF camera 

Color image 

Point cloud 

European project GARNICS  

(Gardening with a Cognitive System) 

 



The process consists of three stages.  

 

 First, color and depth images are acquired and combined to 
obtain a colored point cloud.  

 Second, the different leaves are segmented from the point 
cloud, and a plane or a quadratic surface is fitted to each of 
them. The surface model provides the position and 
orientation of each leaf. This first segmentation may 
contain some errors, e.g., several superimposed leaves may 
fall in the same region, and regions including few points 
may lead to a relatively large fitting error. 

 Third, using the position and orientation of the best leaf 
candidate, the robot moves the camera system closer to it to 
obtain a more detailed view, which is used to obtain a better 
model and eventually separate different leaves. 



Experimental results for different views of plants. A Color image first view (upper left 
panel). Sparse depth with segment boundaries (middle upper panel). Fitted depth (right 
upper panel). Color image close view (lower left panel). Sparse depth with segment 
boundaries of close view (middle lower panel). Fitted depth of selected segment (right 
lower panel). The selected segment is marked in red in the color images. A schematic 
showing the robot base position (0), the initial camera position (1), the leaf position (2) 
and the computed target position of the camera to capture the second viewpoint (3) are 
shown in the left panel. Distances are given in meters. 



Video 



Video 



Solving Perception Uncertainty in 
Aerial Robot Applications 



Aerial Robotics Cooperative Assembly System 

(ARCAS) 

ARCAS Objectives: 

 

Development and experimental 

validation of the first 

cooperative free-flying robot 

system for assembly and 

structure construction 



Application Scenarios 

Flying + Manipulation + Perception + Multi-robot Cooperation 



Video 



Objetives 
• The 3D object tracking component involves the identification 

and tracking of objects using on-board cameras in aerial robots.  

• FeatureDetection: This component localizes and identifies relevant 
features in the input image for object detection and tracking.  

• 3DPoseEstimation-Tracking: Using the information concerning to 
image features, provided by the FeatureDetection component,  this 
component estimates the pose of assembly objects and tracks their 
image features during the assembly task and transportation.  

• 3DVisualServo:  This component is used to perform visual servoing in 
flying robots using the estimated object pose and the tracked features 
given by the 3DPoseEstimation-Tracking component.  

3D Object Tracking 



 

• Environment conditions: 

• Wind 

• Lighting changes (due to clouds, 

the hour of the day, etc.) 

• Shadows (cast shadows, etc.) 
 

• Object/scene appearance: 

• 3D rotations and translations 

• Scale variations 

• Perspective projections 

• Cluttered background 

• Surface reflections and color 

variations 

 

 

 

• Aerial robot platform: 

• Camera pose 

• Camera lens 

• Vibrations 

• Real time processing 

• Cooperative delay of the 

information 

 

• Task: 

• Partial occlusions 

• Relative pose between components 

to be assembly 

Factors that Provoke Uncertainties 



Onboard Camera 

Bar Detection During Assembly Operations 



Visual marks: Outdoor challenges 

Vibrations, noise outdoor and cluttered background 



Video: Visual Marks in Indoor 



Focal length 
unknown 

 Given:  2D/3D correspondences 

 We want: Compute camera pose + focal length 

    

World 
Coordinate 

System 

Rotation, 

Translation, 

Focal length ? 

The (uncalibrated) PnP Problem 

[Peñate, Andrade, Moreno, 2013] 



 Unknowns:                                       

 Camera coord. of the 4 control points  and 

the focal length 
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Independent detection in every frame. 

3D Pose Estimation: the UPnP 



3D Pose Estimation: the UPnP 



Solving Perception Uncertainty 
using Probabilistic Models and  

un/supervised learning models in 
the loop 



General Multimodal Scheme 
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Solving Perception Uncertainty in 
Online Human-Assisted Learning  

using Random Ferns 



Motivation 

Robot TIBI learns and improves its visual perception 

capabilities by means of interactions with humans 

Robot TIBI Robot TIBI 

[Villamizar, Andrade, Sanfeliu, Moreno, 2012] 

[Villamizar, Garrell, Sanfeliu, Moreno, 2012] 

[Villamizar, Moreno, Andrade, Sanfeliu, 2010] 



Objective 

Robot TIBI learns to recognize faces and 

objects using human assistance 



Objective 

   Face Recognition         

Faces 

Robot TIBI learns to recognize faces and 

objects using human assistance 



Objective 

   Face Recognition        Object Recognition 

Faces 3D Objects 

Robot TIBI learns to recognize faces and 

objects using human assistance 



Objective 

   Face Recognition        Object Recognition 

Faces 3D Objects 

Robot TIBI learns to recognize faces and 

objects using human assistance 

The interaction takes a couple of 

minutes (~ 5 min.) 



Approach 

Online Human-Assisted Learning 

Human-Robot Interaction 



Approach 

Online Human-Assisted Learning 

Human-Robot Interaction 

Recognition Results 

Robot Camera 

Online Learning: The visual system is updated continuously 

using its own detection hypotheses 

hypothesis 



Approach 

Online Human-Assisted Learning 

Human-Robot Interaction 

Difficult Cases 

Human-Assisted Learning: The visual system 

requires the human intervetion 



Approach 

Online Human-Assisted Learning 

Human-Robot Interaction 

Camera Touch Screen wii mote Keyboard 

Difficult Cases 



Approach 

Online Human-Assisted Learning 

Human-Robot Interaction 

TIBI : Can you tell me if the 

detection is correct? 
Difficult Cases 

Camera Touch Screen wii mote Keyboard 



Approach 

Online Human-Assisted Learning 

Human-Robot Interaction 

TIBI : Can you tell me if the 

detection is correct? 
Difficult Cases 

Camera Touch Screen wii mote Keyboard 



Approach 

Online Human-Assisted Learning using Random Ferns 



Approach 

Online Classifier 

Online Human-Assisted Learning using Random Ferns 



Approach 

Online Classifier 

 

Online Classifier: 

  • Fast classifier: RFs   

  • Updated continuously 

 

Human Assistance: 

  • Interactive object detection   

  • Reduce drifting 

Human Assistance 

Online Human-Assisted Learning using Random Ferns 



Approach 

  • Object hypotheses:  detections given by the classifier 

Object Hypothesis 



Approach 

  • Object candidate: highest-confidence hypothesis (detection) 

Object Hypothesis 



Approach 

  • New samples: positive and negative samples 

Object Hypothesis 



Approach 

Online Human-Assisted Learning using Random Ferns 

Online Classifier 



Approach 

Drifting 

Online Human-Assisted Learning using Random Ferns 

Online Classifier 

Self-learning 



Approach 

Online Classifier 

 

Human Assistance: 

  • Interactive object detection   

  • Reduce drifting 

Human Assistance 

Online Human-Assisted Learning using Random Ferns 



Training Step 

Description Human 

Assistance 

Recognition 

Scores 

RFs: Offline Random Ferns 

ORFs: Online Random Ferns 

A-ORFs: Online Human-Assisted Random Ferns 

Detections 



Training Step 

http://www.youtube.com/watch?feature=player_embedded&v=hdc6PreOuMM 



Testing Step 



Testing Step 

The classifiers are not updated! 



Testing Step 

http://www.youtube.com/watch?feature=player_embedded&v=hdc6PreOuMM 



Video: Robot Tibi Interacting with People for 

Face Learning 



Solving Perception Uncertainty in 
Human Motion Prediction to 

Accompany People 



Robot Companion 

Objective: 

To accompany people in urban areas maintaining a 
specific distance and an angle. 

 

Perception uncertainty problems: 

 Detection of the person to be accompany 

 Tracking the person 

 Tracking other people and predicting their motion 

[Garrell and Sanfeliu, 2012] 



Robot Accompanying a Person 



Robot Accompanying a Person in Dense 
Urban Area  



Conclusions 

 Robots must deal with uncertainty in 
perception and robot actuation problems in 
real life tasks 

 There is not a unique way to solve 
uncertainty perception problems, but a 
multimodal scheme allows to solve a great 
diversity of problems 

 Human in the loop allows to improve 
perception and robot behavior results   
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