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Vision

A Computational Investigation into the Human Representation and Processing of Visual Information
David Marr

Foreword by Shimon Ullman

Afterword by Tomaso Poggio

David Marr's posthumously published Vision (1982) influenced a generation of brain and cognitive scientists, inspiring many to
enter the field. In Vision, Marr describes a general framework for understanding visual perception and touches on broader
questions about how the brain and its functions can be studied and understood. Researchers from a range of brain and
cognitive sciences have long valued Marr's creativity, intellectual power, and ability to integrate insights and data from
neuroscience, psychology, and computation. This MIT Press edition makes Marr's influential work available to a new generation
of students and scientists.

In Marr's framework, the process of vision constructs a set of representations, starting from a description of the input image
and culminating with a description of three-dimensional objects in the surrounding environment. A central theme, and one that
has had far-reaching influence in both neuroscience and cognitive science, is the notion of different levels of analysis—in Marr's
framework, the computational level, the algorithmic level, and the hardware implementation level.

Now, thirty years later, the main problems that occupied Marr remain fundamental open problems in the study of perception.
Vision provides inspiration for the continui



http://mitpress.mit.edu/catalog/author/default.asp?aid=18323
http://mitpress.mit.edu/catalog/author/default.asp?aid=202
http://mitpress.mit.edu/catalog/author/default.asp?aid=3643

The problem of intelligence (in particular, vision):
how it arises in the brain and how to replicate it in machines

The problem of intelligence is one of the great problems in science,
probably the greatest.

Research on intelligence by neuroscience and computer science (Al):

e a great intellectual mission
e will help medicine and develop more intelligent artifacts
e will improve the mechanisms for collective decisions

These advances will be critical to of our society’s
e future prosperity
e education, health, security







Vision @CBCL, ~20 years ago

Theorems on foundations of learning

Predictive algorithms

Sung & Poggio 1995, also Kanade&
Baluja....

How visual cortex works




Vision @CBCL, ~20 years ago
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Theorems on foundations of learning

Predictive algorithms

Face detection is now available
in digital cameras (commercial
systems)

How visual cortex works




Vision @CBCL, ~18 years ago

flz) = iq Theorems on foundations of learning

Predictive algorithms

Papageorgiou&Poggio, 1997, 2000
also Kanade&Scheiderman

How visual cortex works
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Vision, ~ nhow

Theorems on foundations of learning

Predictive algorithms

Pedestrian and car detection
are also “solved” (commercial
systems, MobilEye,
Jerusalem)

How visual cortex works
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Pedestrian accidents occur every day
in our increasingly intensive traffic environment.

http://www.volvocars.com/us/all-cars/volvo-s60/pages/5-things.as



http://www.volvocars.com/us/all-cars/volvo-s60/pages/5-things.aspx?p=5

Golden age for the technology of
narrowly intelligent machines
but...

r...even the MobilEye vision system is
not intelligent

It cannot deal with a Turing test of vision:
understanding a scene.




A “Turing”’ test for vision?

My personal bet: we may need to understand
visual cortex (and the brain!) to achieve scene
understanding at human level, and thereby
develop systems that pass a full Turing test.

Thus: science of (natural) vision.




Vision in the Brain

Human Brain
1010-101 neurons (~1 million flies)
1014- 101> synapses
~ 30% cortex is vision (more than for
language and any other modality)




Visual Object Recognition:
the ventral stream (macaque)

The ventral stream
V4, IT
A gradual increase in the
receptive field size, in the “complexity” of
the preferred stimulus, in “invariance” to
position and scale changes
Kobatake & Tanaka, 1994




Recognition in the Ventral Stream:
“standard” feedforward model

*Modified from (Gross, 1998)

FRONTAL-
“WORKING MEMORY™
Prefrontal
Cortex

wes MAX

L.

[software available online Riesenhuber & Poggio 1999, 2000;..Serre Kouh Cadieu
with CNS (for GPUs)] Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007




Recognition in Visual Cortex: “classical model”,
selective and invariant

It is in the family of “Hubel-Wiesel”
models (Hubel & Wiesel, 1959: qual.
Fukushima, 1980: quant; Oram &
Perrett, 1993: qual;, Wallis & Rolls,
1997; Riesenhuber & Poggio, 1999;
Thorpe, 2002; Ullman et al., 2002;
Mel, 1997; Wersing and Koerner,

2003; LeCun et al 1998: not-bio; Amit
& Mascaro, 2003: not-bio; Hinton,
- LeCun, Bengio not-bio; Deco & Rolls
s 2006...)

As a biological model of
object recognition in the
ventral stream — from V1 to
PFC -- it is perhaps the most

e00s 0008 0000 o quantitatively faithful to
f \O ey known neuroscience data

— TUNING
wes MAX - .

1 1 Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu
[SOftwa re avallable On I I ne] Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007
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Model “works”:
it accounts for physiology

Hierarchical Feedforward Models:
is consistent with or predict neural data

V1:
Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)

MAX:-like operation in subset of complex cells (Lampl et al 2004)
V2:

Subunits and their tuning (Anzai, Peng, Van Essen 2007)
V4.
Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)
MAX-like operation (Gawne et al 2002)
Two-spot interaction (Freiwald et al 2005)
Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu, Kouh, Connor et al., 2007)
Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)
IT:
Tuning and invariance properties (Logothetis et al 1995, paperclip objects)
Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)

Read out results (Hung Kreiman Poggio & DiCarlo 2005)
Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

Human:

Rapid categorization (Serre Oliva Poggio 2007)
Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)



Model “works”:
it accounts for psychophysics
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Model “works”:
it accounts for psychophysics
Feedforward Models:

“predict” rapid categorization
(82% model vs. 80% humans)
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Image-by-image correlation:
around 73%
for model vs. humans)
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Model “works”:

Models of the ventral stream in cortex
perform well compared to
engineered computer vision systems (in 2006)
on several databases
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Bileschi, Wolf, Serre, Poggio, 2007



Model “works”:
it performs well at computational level

Models of cortex lead to better systems for action
recognition in videos: automatic phenotyping of mice

| £/0°

huang , Garrote, Yu, Khilnani, Poggio, Mutch Steele, Serre, Nature Communicatons, 2010




Visual Cortex:
models and theories

Forward, HMAX-type models work well
(summarizing+predicting physiology AND
in terms of performance in visual
recgnition) but...

For 10years+
| did not manage to understand how

O,, 2
oqfi szaN model works....

0000 0000 0000 0000
I
N
.+ Complex cells Si s A Y
Main routes TUNING { :
Bypass routes  ss= MAX . “v

So...we need theories -- not only models!

FOUNDATIONS or
COMPUTATIONAL
MATHEMATICS

Mathematics of the Neural Response

S Smuade < L. Reoason < J. Bomnvrie « AL Caponnetio «
T. Paggin




A theory (unpublished) of the ventral stream:
too nice to be true?

THE COMPUTATIONAL MAGIC OF THE VENTRAL STREAM: TOWARDS A THEORY

Tomaso Poggio* (section 4 with Jim Mutch*; appendix 7.2 with Joel Leibo* and appendix 7.9
with Lorenzo Rosascof)
* CBCL, McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
T Istituto Italiano di Tecnologia, Genova, Italy

Nature Precedings, doi:10.1038/npre.2011.6117.1 July 16, 2011: outdated version;

new ones will be posted in the future.



http://precedings.nature.com/documents/6117/version/3

Motivation: transformations may be a main difficulty
for (biological) object recognition
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Motivation: transformations may be the main difficulty
for (biological) object recognition
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Some of the questions
answered by the theory

e What is the main computational task of
the ventral stream?

e Why do simple cells in V1 have Gabor
tuning curves?

e What are V2, V4, IT computing?

e Why do cells in the AL face patch show
mirror symmetric tuning curves?




Gabor-like tuning with “universal constants” in simple cells
(Jones and Palmer, 1987; Ringach, 2002; Niell and Stryker, 2008):

O Macaque
% Cat
& Mouse

Carandini



2 Different stages in the theory

1. development: learning of transformations (and acquiring invariance)
via motion sequences

2. mature stage: acquire an object (single image) and (later) recognize
it (from single image)




Image representation in the ventral stream

* Images can be represented by a set of functionals on the

o INBERREPEELAEFRSPSHRaMERSral functionals for neurons to
compute are dot products between “image patches” and
another image patch (called template) which is stored in terms
of synaptic w

Cell Body




Templates and signature

We look at a finite (|7| = D < oo) set of measurement on the
image such as

(t), i=1,....D

Thus an image [ is represented by a set of neurons as a signature
vector of | defined with respect to the templateset 7:

[ (l.t) )

(I, t2)

\ (I.tp)

2




A motivation for signatures: the Johnson-Lindenstrauss theorem
(features do not matter much!)

For any set V of n points in RY, there exists a map P : R — RX
such that for all u,v € V

(I=e)lu=v[*<| Pu=Pv|P<(1+€)[lu—v]|?

where the map P is a random projection on R¥ and

JL suggests that good image representations for classification and
discrimination of n objects can be provided by k dot products with
random templates!




(b) Template (c) Transformed Input and (d) Input and Iransformed
Template Template

(e) A neuron’s dendritic tree
with inputs at its synapses

Figure 2: The dot product between a transformed image and a template (c) is equivalent to the dot product
between the image with the inversely transformed template (d). Neurons can easily perform high-dimensional dot
products between inputs on their dendritic tree and stored synapses weights (indicated in (d)).




Geometric transformations

We define as geometric transformations of the image /
transformations T o [/ such that:

Tol(x,y)=I1(X",y")

An example of T is the affine case, eg

x' = Ax + t,




Initial observation:
learning to be invariant for any new object

Suppose that (during development) one template and all its
transformations are stored

go,81...8,1

Then if the group is compact

[-gt-gt..l-gt~g 'l-t,g''lt,.,g.'1t

that is the two sets of dot products are the same apart from ordering.
Thus any group average (or pooling operation) will provide a number
which is invariant to transformations of the image even if the image has
been seen only once.




Projections of Probabilities

As argued later, simple operations for neurons are
(high-dimensional) dot products between inputs and stored
“templates” which are images. It turns out that classical results
(such as the Cramer-Wold theorem) ensure that lower dimensional
projections of a probability distribution on the unit ball uniquely
characterize it.

Theorem Let P and Q two probability distributions on RY. Let
= (t € S(RY), s.t. P, = (P.t) = (Q.t) = Q;), where S(R?Y) is
the unit ball in RY. Let \(T') its normalized measure. We have
that if A\(I') > 0 then P = Q. This implies that the probability of
choosing t such that P, = Q; is equal to 1 if and only if P = Q
and the probability of choosing t such that P; = Q; is equal to 0 if
and only if P # Q.




Analog of JohnsonLindenstrauss
for probabilities

Fineteness of the number of templates in practical cases is ensured by
Theorem (Heppes et al., 1956) Let P be a discrete probability
distribution on RY with a support made with exactly k distinct atoms.
Assume that V4. .... V.1 are subspaces of RY of respective dimensions
di. ..., dk+1 such that no couple of them is contained in a hyperplane (i.e.
no straight line is perpendicular to more than one of them). Suppose,
e.g. dy =1=..=ds1 and call the subspaces ti. i = 1.....k+ 1. Then,
for any probability distribution Q in RY, we have P = Q if and only if
tiel, foreveryl <i<k+1.

In particular, for a probability distribution made with k atoms in R, we
see that at most k + 1 directions are enough to characterize the
distribution. Thus a finite — albeit large — number of one-dimensional
projections is equivalent to the full distribution.




Group Invariance

The estimation of P(gl - t*) seems to require the observation of
the image and “all” its transforms. ldeally we would like to
compute an invariant signature for a new object seen only once
(we can recognize a face at a different distances after just one
observation). The key here is the simple observation that

gl -tk = 1. g 1tk Thus it is possible for the system to store for
each template t* all its transformations gt“ and thus later obtain
an invariant signature for new images.




Group Invariance

» The full P(gl) is a probability density induced by “all" g € G;
not surprisingly it is a full and invariant characterization of /
and all its transforms.

The Cramer Wold-like theorems say that a proxy for P(gl) is
a set of K one dimensional P(g/ - t*). This still requires
observation of all the transformations of / induced by the
group.

Sincegl - th=1-g it is however possible possible to
obtain an invariant signature from a single image / by storing
for each template t¥ all its transformations gt*.

—1 ¢k




Group Invariance

The following holds since the distributions P, (g/ - t*) and

P, (1 - g=1tk) are equivalent (the inverse g=! is an element of the
group):

Theorem Empirical estimates of the probability distribution
Po(l-g=1tk) for k =1.--- . K represent a e-unique (empirical)
invariant associated with the orbit of | under the group G.




Neurons ways to compute invariance

During development of the visual system a group of |G| (simple)
cells store in their synapses an image patch t* and its
transformations gj tX. -5 8|G| tk. This is done for several image
patches (templates). Later when an image is presented, the simple
cells compute [ - gjt* for i =1, ..., |G|. Complex cells pool the
outputs of the simple cells and compute ;X = Z[.illcr(l . gith + nA)
where o is a smooth step function (o(x) =0 for x <0, o(x) =1
for x >0) and n=1..... N.




Neural sighature;
Invariance and uniqueness

Linear combinations of the ;% for various n could provide an
effective binning of P(/ - gt¥) and thus an estimate of the empirical
distribution at resolution A. Of course we are not interested in
reconstructing the full probabilities from the empirical estimate; we
do not even need the empirical estimate of P(/ - gt¥); what is
important is that the ,uf, determine uniquely the probabilities and
the associated orbits. Following this argument it can be proved
that a vector with KN components 11X represents a unique and

invariant signature for image |.




Neural signature: energy model

An invariant signature can be computed in other, equivalent ways
at the level of complex cells. Instead of the ,u,f‘, components, the
moments my = [(/ - git*)"dg can be computed (they
characterize the projections of the probability distributions and can
be regarded as group averages. Under some rather weak
conditions, they characterize uniquely the distribution P(/ - t). For
n = 2 this corresponds to an energy model of complex cells; for
very large n it corresponds to a max operation by complex cells.
Other nonlinearities are also possible. The available evidence
suggests that simple/complex cells in V1 and cells in AL may be
described better in terms of energy models than in terms of the
sigmoidal nonlinearity.




A theory of hierarchical architectures

1.
2.

Hierarchical architectures divide and conquer.

In a hierarchical architecture different types of transformations can
be factorized in different layers. This property ensures significant
advantages in terms of sample complexity of learning.

. In multilayer architectures with modules of the simple-complex type

the following covariance-invariance property holds: For a given
transformation of an image or part of it, the signature from complex
cells at a certain level is either invariant or covariant w.r.t. the
group of transformations; if it is covariant there will be a higher
layer in the network at which it is invariant.

. Invariant hierarchical architectures reflect the hierarchy of wholes

and parts—of objects and components—in the visual world as
described by a special metric defined by a derived kernel that is
iteratively obtained from the initial similarity defined at the first
layer.

The last two properties are related to the problem of clutter and context

in object recognition.






10 15
Magriuce of Trandaton

(a) Reference input and distractor. (b)

Figure 3: Two distinct stimuli (left) are presented at various location in the visual field. The Euclidean distance
between C2 response vectors in HMAX is reported (right). It can be seen how the response are invariant to global
translation and discriminative. The C2 units represent the top of a hierarchical, convolutional architecture.
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Part Il
Linking Conjecture

The memory in a layer of cells (such as simple cells in V1) is
stored in the weights of the connections between the neurons
and the inputs (from the previous layers).

Instead of storing a sequence of discrete frames (the
templatebook) as assumed in Part |, online learning is more
likely, with synaptic weights being incrementally modified
during development.

Hebbian-like synapses exist in visual cortex.

Hebbian-like learning is equivalent to an online algorithm
computing PCAs.

As a consequence, the tuning of simple cortical cells is
dictated by the PCAs of the templatebook.




Unsupervised tuning (during development)
and eigenvectors of covariance matrix

Hebb synapses imply that the tuning of the
neuron converges to the top eigenvector of
the covariance matrix of the “frames” of
the movie of objects transforming. The
convergence follows the Oja flow

[, — 1, =xey+n(t,y) y = Xof

Different cells are exposed (during
development) to translations in different

directions.




Gaussian aperture: the cortical equation

Define as templatebook T the matrix where each column represents a
template t shifted relative to the previous column and “seen through a
Gaussian aperture”. The image is assumed to be 1D. The image seen
through a Gaussian aperture is then t(y — x)g(x) when the image is
shifted by y. We are led to the following problem: find the eigenvectors
of the symmetric matrix GT TT TG where G is a diagonal matrix with
the values of a Gaussian along the diagonal. We consider the continuous
version of the problem, that is the eigenvalue problem

/dxg x)/dst —5)t(s — x) = Apn(y)

which is rewritten as the cortical equation

[ de()g)ely = x)0a(x) = At

with t(x) being the autocorrelation function of the template.
This is an equation describing the development of simple cells in V1; it describes development of other cortical
layers as well.




2D eigenvectors

In 1D the eigenvectors are Gabor like
functions. In 2D the solutions are also
Gabor with an orientation orthogonal to the
direction of motion. Motion, together with

high-pass filtering in the retina induces
symmetry breaking that allows non-
symmetric solution to emerge. Note that
for motion at constant speed
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Figure 4: Retinal processing pipeline used for V1 simulations.




Cortical equation in 2D:
natural images, Gabor-like receptive fields
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Cortical equation in 2D:

natural imaies| Gabor-like receptive fields

0=83 o0=90 o06=97 00=105 06=113 06=83 o06=90 o0=97 o0=105 o=113



Prediction aggrees with data!




Beyond V1, towards V2 and V4:
wavelets of wavelets

f

oW e )

-
“ - - o - . - - A
4 A 4 A ~ | A ~
- - - - - - . - — .
C (- ¢ ¢ = £ £ C
v ‘ . . \ y . -
“
. - 3 , . ' N y. A £ S ' N y " 4 'y
. ¥ v L 4 - v . g - . Y » N .

.

' . - - . o - - ~
A [N N - A F ~ »

‘ ‘ ' Y ‘ ‘ [+ \
. ‘ " - \ g , .
"

o . . r . N . 1L £

-




We are working on implementing
the full theory

(the corresponding model is an
extension of Hmax and
convolutional networks)




Class-specific modules
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Class-specific modules

In general, global transformations — such as rotation in 3D of an
object — can be represented only approximately. For specific classes
of objects... good approximations of global non-affine
transformations are possible, using the dot-products-and-templates
approach.

We consider faces. An additional layer storing a set of face-specific
templates for different rotations of a face can provide the required
class-specific approximate invariance.

The transformations here are class-specific and not generic.




Recognizing a face from a different viewpoint
. B E § Viewpoint tolerant units
(complex units)

View-tuned units, tuned to full-face
templates for different view angles
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Tolerance to a transformation
oel+Jim+tp, 2010 may be learned from examples




Learning class specific transformations:
quasi-invariance to pose for faces
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Joel+Jim+tp, NIPS 2012



PCA of face views are tuning of AL neurons: what are they?
Lemma: PCAs here are odd or even functions, and so the
complex cells always even (because of square)!

16021.72 13790.66

12396.59




Response of simple AL “model” cells to
different views of a face
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A theory of biological vision:
will it tell us what cortex computes and
properties of its neurons?

e The basic equation of physics can be derived from a small number of
symmetry properties: invariance wrt space+time, conservation of
energy, invariance to measurement units....

Is the architecture and tuning properties of visual cortex predicted
from basic symmetries of geometric transformations of images?

e The brain would be a mirror of the physical world and the tuning of
its neurons would reflect symmetry properties of basic physics and
geometry.
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