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Notation

Many machine learning (ML) problems involve learning a mapping from
one space to another. Notation:

Input set X

For each x ∈ X, candidate outputs are Y(x) ⊆ Y

Mapping is hw : X→ Y
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Linear Models

Our predictor will take the form

hw(x) = arg max
y∈Y(x)

w>f(x , y)

where:

f is a vector function that encodes all the relevant things about
(x , y); the result of a theory, our knowledge, feature engineering,
unsupervised feature learning, etc.

w ∈ RD are the weights that parameterize the mapping.

Often, e.g., in natural language processing (NLP) D is very large (> 106).

In some cases (e.g., in NLP), the maximization above is itself challenging.
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Learning Linear Models

We observe a collection of examples {(xn, yn)}N
n=1.

y = mountain y = coast

Learn w from the data, via regularized empirical risk minimization,

ŵ = arg min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical risk

+ Ω(w)︸ ︷︷ ︸
regularizer

Logistic regression, perceptron, conditional random fields, SVM, some
supervised generative models, all fit the linear modeling framework.
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What is Sparsity? Why Is It Important?

The sparsity hypothesis: some/most dimensions of f are not needed
for a good hw; those dimensions can be zero, leading to a sparse w.

The bet on sparsity (Friedman et al., 2004): it’s often correct; if
not, there’s no good solution anyway!

Models with just a few features are:

easier to explain/interpret
cheaper to implement

Generalization:

the goal of ML is to generalize well to new examples
encouraging the use of few features discourages overfitting
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(Automatic) Feature Selection

Domain experts are often good at engineering features.

Can we automate the process of selecting which ones to keep?

Three main classes of methods (Guyon and Elisseeff, 2003):

1 filters

(inexpensive and simple, but very suboptimal)

2 wrappers

(better, but very expensive)

3 embedded methods

(this talk)
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Embedded Methods for Feature Selection

Formulate the learning problem as a trade-off between

minimizing loss (fitting the training data, achieving good accuracy on
the training data, etc.)

choosing a desirable model (e.g., with no more features than needed)

min
w

1

N

N∑
n=1

L(w; xn, yn) + Ω(w)

Key advantage: declarative statements of model “desirability” often lead
to well-understood, solvable optimization problems.
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Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: Aij = fj (xi ).

Response vector: y = [y1, ..., yN ]>.

The most/best studied loss function (statistics, machine learning,
signal processing); dates back to Legendre and Gauss (early 1800s).

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 10 / 88



Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: Aij = fj (xi ).

Response vector: y = [y1, ..., yN ]>.

The most/best studied loss function (statistics, machine learning,
signal processing); dates back to Legendre and Gauss (early 1800s).

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 10 / 88



Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: Aij = fj (xi ).

Response vector: y = [y1, ..., yN ]>.

The most/best studied loss function (statistics, machine learning,
signal processing); dates back to Legendre and Gauss (early 1800s).

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 10 / 88



Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: Aij = fj (xi ).

Response vector: y = [y1, ..., yN ]>.

The most/best studied loss function (statistics, machine learning,
signal processing); dates back to Legendre and Gauss (early 1800s).

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 10 / 88



Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: Aij = fj (xi ).

Response vector: y = [y1, ..., yN ]>.

The most/best studied loss function (statistics, machine learning,
signal processing); dates back to Legendre and Gauss (early 1800s).

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 10 / 88



Loss functions (II)

Classification and structured prediction using log-linear models
(logistic regression, max ent, conditional random fields):

LLR(w; x , y) = − log P (y |x ; w)

= − log
exp(w>f (x , y))∑

y ′∈Y(x) exp(w>f (x , y ′))

= −w>f (x , y) + logZ (w, x)

Partition function:

Z (w, x) =
∑

y ′∈Y(x)

exp(w>f (x , y ′)).

Related loss functions: hinge loss (in SVM) and the perceptron loss.
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Main Loss Functions: Summary

Squared (linear regression) 1
2

(
y −w>f(x)

)2

Log-linear (MaxEnt, CRF, logistic) −w>f(x , y) + log
∑
y ′∈Y

exp(w>f(x , y ′))

Hinge (SVMs) −w>f(x , y) + max
y ′∈Y

(
w>f(x , y ′) + c(y , y ′)

)
Perceptron −w>f(x , y) + max

y ′∈Y
w>f(x , y ′)

(in the SVM loss, c(y , y ′) is a cost function.)

The log-linear, hinge, and perceptron losses are particular cases of general
family (Martins et al., 2010).
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Regularization

Regularized parameter estimate:

ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)︸ ︷︷ ︸
total loss

where Ω(w) ≥ 0 and lim
‖w‖→∞

Ω(w) =∞ (coercive function).

Why regularize?

Improve generalization by avoiding over-fitting.

The total loss may not be coercive (e.g., logistic loss on separable
data), thus having no minima.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).
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Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).
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Regularization vs. Bayesian estimation

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

...interpretable as Bayesian maximum a posteriori (MAP) estimate:

ŵ = arg max
w

exp (−Ω(w))︸ ︷︷ ︸
prior p(w)

N∏
n=1

exp (−L(w; xn, yn))︸ ︷︷ ︸
likelihood (i.i.d. data)

.

This interpretation underlies the logistic regression (LR) loss:
LLR(w; xn, yn) = − log P (yn|xn; w).

... and the squared error (SE) loss:

LSE(w; xn, yn) = 1
2

(
y −w>f(x)

)2
= − logN(y |w>f(x), 1)
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Norms: A Quick Review

Before focusing on regularizers, a quick review about `p norms.

Examples of norms:

‖w‖p =

(∑
i

|wi |p
)1/p

(called `p norm, for p ≥ 1).

Notable cases:

the famous `1 norm: ‖w‖1 =
∑

i |wi |
the `∞ norm: ‖w‖∞ = lim

p→∞
‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

The infamous `0 “norm”: ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

(not a norm).
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Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ‖w‖2

2

)

Ridge regression (SE loss): Hoerl (1962), Hoerl and Kennard (1970).

Closely related to Tikhonov (1943) and Wiener (1949).

Used early in computer vision (Bertero et al., 1988), (Poggio et al., 1985).

Ridge logistic regression: Schaefer et al. (1984), Cessie and

Houwelingen (1992); in ML: Chen and Rosenfeld (1999).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).
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Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi ) ∝ exp (−λ|wi |)

Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

...also in NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: more challenging optimization.
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The Lasso and Sparsity
Why does the Lasso yield sparsity?

The simplest (1D) case:

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =


y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w2 =

1

1 + λ
y
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The Lasso and Sparsity (II)

Why does the Lasso yield sparsity?
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Relevant Theory?

Theoretical results for `1-regularized logistic regression:

PAC-Bayesian bounds (generalization improves with sparsity):
Krishnapuram et al. (2005)

Logarithmic sample complexity (versus linear, for ridge) Ng (2004)

Oracle bounds (van de Geer, 2008)

Consistency (Negahban et al., 2012)
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Models

`1 regularization promotes sparse models

A very simple sparsity pattern: small cardinality

Main question: how to promote less trivial sparsity patterns?
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Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if prior assumptions are correct (Stojnic et al., 2009)

Many applications:

feature template selection (Martins et al., 2011b)

multi-task learning (Caruana, 1997; Obozinski et al., 2010)

multiple kernel learning (Lanckriet et al., 2004)

learning the structure of graphical models (Schmidt and Murphy, 2010)
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“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid
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Example 1: Sparsity with Multiple Classes

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we may still need all the input features

What we want: discard some input features

Solution: one group per input feature
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Example 2: Multi-Task Learning
(Caruana, 1997; Obozinski et al., 2010)

Same thing, except now rows are tasks and columns are features

shared features

ta
sk

s

What we want: discard features that are irrelevant for all tasks

Solution: one group per feature
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Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)
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Lasso versus group-Lasso
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Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary groups
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Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)
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Example: Magnetoencephalographic (MEG)
Reconstruction

Group: localized cortex area at localized time period (Bolstad et al., 2009)
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Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary groups
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Tree-Structured Groups

Assumption: if two groups overlap, one contains the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded
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Main messages:

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps
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Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi )︸ ︷︷ ︸
total loss

,

Two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (use the training examples one by one)
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A Key Ingredient: Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the RD → RD map (Moreau, 1962)

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)
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Proximity Operators (II)

proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

`2 regularization, Ω(w) = λ‖w‖2: vector soft thresholding

proxΩ(w) =

{
0 ⇐ ‖w‖ ≤ λ

w
‖w‖ (‖w‖ − λ) ⇐ ‖w‖ > λ

indicator function, Ω(w) = ιS(w) =

{
0 ⇐ w ∈ S

+∞ ⇐ w 6∈ S

proxΩ(w) = PS(w)

Euclidean projection
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Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωm(wm)

Groups: Gm ⊂ {1, 2, ...,D}. wm is the sub-vector with the indices in Gm.

Non-overlapping (Gm ∩ Gn = ∅, for m 6= n): separable prox operator

[proxΩ(w)]m = proxΩm
(wm)

Tree-structured: (two groups are either disjoint or one contais the
other) proxΩ can be computed recursively (Jenatton et al., 2011).

Arbitrary groups:
For Ωm(wm) = ‖wm‖2: solved by convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).
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(Block-)Coordinate Descent

minw Ω(w) + Λ(w), where Λ(w) = 1
N

∑N
i=1 L(w, xi , yi ) (loss)

Update one (block of) component(s) of w at a time:

w new
i ← arg min

wi

Ω([w1, ...,wi , ...wD ]) + Λ([w1, ...,wi , ...wD ])

(Genkin et al., 2007; Krishnapuram et al., 2005; Liu et al., 2009; Shevade and

Keerthi, 2003; Tseng and Yun, 2009; Yun and Toh, 2011)

Squared error loss: closed-form solution. Other losses (e.g., logistic):

solve numerically, e.g., Newton steps (Shevade and Keerthi, 2003).

use local quadratic approximation/bound (Krishnapuram et al., 2005;
Tseng and Yun, 2009; Yun and Toh, 2011).

Shown to converge; competitive with state-of-the-art (Yun and Toh, 2011).

Has been used in NLP: Sokolovska et al. (2010); Lavergne et al. (2010).
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Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , address min

w
Λ(w) subject to Ω(w) ≤ τ

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D logD) cost
(Duchi et al., 2008).

Viable and competitive method, which has been used in machine learning,
including in NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 44 / 88



Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , address min

w
Λ(w) subject to Ω(w) ≤ τ

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D logD) cost
(Duchi et al., 2008).

Viable and competitive method, which has been used in machine learning,
including in NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 44 / 88



Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , address min

w
Λ(w) subject to Ω(w) ≤ τ

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D logD) cost
(Duchi et al., 2008).

Viable and competitive method, which has been used in machine learning,
including in NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 44 / 88



Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , address min

w
Λ(w) subject to Ω(w) ≤ τ

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D logD) cost
(Duchi et al., 2008).

Viable and competitive method, which has been used in machine learning,
including in NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 44 / 88



Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , address min

w
Λ(w) subject to Ω(w) ≤ τ

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D logD) cost
(Duchi et al., 2008).

Viable and competitive method, which has been used in machine learning,
including in NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 44 / 88



From Gradient to Hessian: Newton’s Method

Assume F (w) = Ω(w) + Λ(w) is twice-differentiable.

Second order (quadratic) Taylor expansion around w′:

F (w) ≈ F (w′) +∇F (w′)︸ ︷︷ ︸
Gradient

>
(w −w′) +

1

2
(w −w′)> H(w′)︸ ︷︷ ︸

Hessian:

(w −w′)

Use the direction that minimizes this quadratic approximation:

w ← w − α(H(w))−1∇F (w)

with stepsize α usually determined by line search.

Drawback: may be costly (or impossible) to compute and invert the
Hessian! O(D3) for a näıve approach.

Quasi-Newton methods, namely L-BFGS, approximate the inverse
Hessian directly from past gradient information.
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Proximal Gradient

Recall the problem: min
w

Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).
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Monotonicity and Convergence

Proximal gradient, a.k.a., iterative shrinkage thresholding (IST):

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt)) .

Monotonicity: if ηt ≤ 1/L, then Λ(wt+1) + Ω(wt+1) ≤ Λ(wt) + Ω(wt).

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t

)

Important: monotonicity doesn’t imply convergence of w1,w2, ...,wt , ....

Convergence (even with inexact steps) proved for ηt ≤ 2/L (Combettes
and Wajs, 2006).
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Accelerating IST: SpaRSA

The step sizes ηt ≤ 2/L (guarantees convergence) and ηt ≤ 1/L
(monotonicity) are too conservative.

A bolder choice: let ηt mimic a Newton step (Barzilai and Borwein, 1988),

1

ηt
I ∼ H(wt) (Hessian)

Approximation in the mean squared sense over the previous step:

1

ηt
= arg min

α
‖α(wt −wt−1)− (∇Λ(wt)−∇Λ(wt−1))‖2

Resulting algorithm: SpaRSA (sparse reconstruction by separable
approximation); shown to converge and to be fast Wright et al. (2009).
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Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t2

)
(vs O(1/t) for IST)

Convergence of iterates has not been shown.
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Least Angle Regression (LARS)
LARS only applies to ŵ(λ) = arg min

w
λ‖w‖1 + ‖Aw − y‖2

Key ideas (Efron et al., 2004; Osborne et al., 2000)

“regularization path” ŵ(λ) is piecewise linear (Markowitz, 1952);
the cusps can be identified in closed form;
simply jump from one cusp to the next.

Cons: doesn’t apply to group regularizers; exponential worst case
complexity (Mairal and Yu, 2012).
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w
λ‖w‖1 + ‖Aw − y‖2

Key ideas (Efron et al., 2004; Osborne et al., 2000)
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Homotopy/Continuation Methods

LARS is related to a more general family: homotopy/continuation
methods.

Consider ŵ(λ) = arg min
w

λΩ̄(w) + Λ(w)

Key ideas

start with high value of λ, such that ŵ(λ) is easy (e.g., zero);

slowly decrease λ while “tracking” the solution;

“tracking” means: use the previous ŵ(λ) to “warm start” the solver
for the next problem.

It’s a meta-algorithm of general applicability when using “warm startable”
solvers (Figueiredo et al., 2007; Hale et al., 2008; Osborne et al., 2000).
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slowly decrease λ while “tracking” the solution;

“tracking” means: use the previous ŵ(λ) to “warm start” the solver
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slowly decrease λ while “tracking” the solution;

“tracking” means: use the previous ŵ(λ) to “warm start” the solver
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Some Stuff We Didn’t Talk About

shooting method (Fu, 1998)

grafting (Perkins et al., 2003) and grafting-light (Zhu et al., 2010)

orthant-wise limited-memory quasi-Newton (OWL-QN) (Andrew and
Gao, 2007; Gao et al., 2007); doesn’t handle overlapping groups

alternating direction method of multipliers (ADMM); handles
overlapping groups (Afonso et al., 2010; Figueiredo and Bioucas-Dias,
2011).

forward stagewise regression (Hastie et al., 2007);

...several more; this is an active research area!
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Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning (“the
tradeoffs of large scale learning” by Bottou and Bousquet (2007))
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Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi )︸ ︷︷ ︸
empirical loss

,

input: stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for
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SGD with Sparsity?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)

`2-regularization Ω(w) = λ
2‖w‖

2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!
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Plain SGD with `2-regularization
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“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)
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Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations
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Online Forward-Backward Splitting (Duchi and
Singer, 2009)

input: stepsize sequences (ηt)T
t=1, (ρt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(w; xt , yt)
proximal step: w ← proxρt Ω(w)

end for

generalizes truncated gradient to arbitrary regularizers Ω
can tackle non-overlapping or hierarchical group-Lasso, but arbitrary
overlaps are difficult to handle (more later)

practical drawback: iterates are usually not very sparse

converges to ε-accurate objective after O(1/ε2) iterations
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What About Group Sparsity?

Online forward-backward splitting (Duchi and Singer, 2009) handles
groups.

All that is necessary is to compute proxΩ(w)

easy for non-overlapping and tree-structured groups

But what about general overlapping groups?

Martins et al. (2011a): a prox-grad algorithm that can handle arbitrary
overlapping groups

decompose Ω(w) =
∑J

j=1 Ωj (w) where each Ωj is non-overlapping

then apply proxΩj
sequentially

still convergent (Martins et al., 2011a)
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Online Proximal Gradient (Martins et al., 2011a)

input: gravity sequence (σt)T
t=1, stepsize sequence (ηt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(θ; xt , yt)
sequential proximal steps:
for j = 1, 2, . . . do

w ← proxηtσt Ωj
(w)

end for
end for

PAC Convergence: ε-accurate solution after T ≤ O(1/ε2) rounds

Computational efficiency: Each gradient step is linear in the
number of features.
Each proximal step is linear in the number of groups M.
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Summary of Algorithms

Converges Rate Sparse Groups Overlaps
Coord. desc. X ? X Maybe No
Prox-grad X O(1/ε) Yes/No X Not easy
OWL-QN X ? Yes/No No No
SpaRSA X O(1/ε) or better Yes/No X Not easy
FISTA X O(1/

√
ε) Yes/No X Not easy

ADMM X O(1/ε), O(1/
√
ε) No X X

Online subgrad. X O(1/ε2) No X No
Truncated grad. X O(1/ε2) X No No
FOBOS X O(1/ε2) Sort of X Not easy
Online prox-grad X O(1/ε2) X X X
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Applications of Structured Sparsity in ML

Relatively few to date; we will focus on several recent NLP applications
(Martins et al., 2011b):

Phrase chunking

Named entity recognition

Dependency parsing
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Martins et al. (2011b): Group by Template

Feature templates provide a straightforward way to define non-overlapping
groups.

To achieve group sparsity, we optimize:

min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical loss

+ Ω(w)︸ ︷︷ ︸
regularizer

where we use the `2,1 norm (group Lasso):

Ω(w) = λ

M∑
m=1

dm‖wm‖2

for M groups/templates.
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Chunking

x = “He reckons the current account deficit will narrow to only $ 1.8 billion in

September”

CoNLL 2000 shared task (Sang and Buchholz, 2000)

Unigram features: 96 feature templates using POS tags, words, and
word shapes, with various context sizes

Bigram features: 1 template indicating the label bigram

Baseline: L2-regularized MIRA, 15 epochs, all features,
cross-validation to choose regularization strength

Template-based group lasso: 5 epochs of sparseptron + 10 of
MIRA
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Chunking Experiments

Baseline Template-based group lasso
# templates 96 10 20 30 40
model size 5,300,396 71,075 158,844 389,065 662,018
F1 (%) 93.10 92.99 93.28 93.59 93.42
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Chunking
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Sparceptron + MIRA (B=30)

Memory requirement of sparseptron is < 7.5% of that of the baseline.
(Oscillations are due to proximal steps after every 1,000 instances.)
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Named Entity Recognition

CoNLL 2002/2003 shared tasks (Sang, 2002; Sang and De Meulder,
2003): Spanish, Dutch, and English

Unigram features: 452 feature templates using POS tags, words, word
shapes, prefixes, suffixes, and other string features, all with various
context sizes

Bigram features: 1 template indicating the label bigram

Baselines:
L2-regularized MIRA, 15 epochs, all features, cross-validation to choose
regularization strength
sparseptron with lasso, different values of C

Template-based group lasso: 5 epochs of sparseptron + 10 of
MIRA
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Non-projective Dependency Parsing

CoNLL-X shared task (Buchholz and Marsi, 2006): Arabic, Danish,
Dutch, Japanese, Slovene, and Spanish

Arc-factored models (McDonald et al., 2005)

684 feature templates by conjoining words, shapes, lemmas, and POS
of the head and the modifier, contextual POS, distance and
attachment direction

Baselines:

MIRA with all features
filter-based template selection (information gain)
standard lasso

Our methods: template-based group lasso; coarse-to-fine
regularization

Budget sizes: 200, 300, and 400
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Template-based group lasso is better at selecting feature templates than
the IG criterion, and slightly better than coarse-to-fine.
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Summary

Sparsity is desirable in machine learning: feature selection, runtime,
memory footprint, interpretability

Beyond plain sparsity: structured sparsity can be promoted through
group-Lasso regularization

Choice of groups reflects prior knowledge about the desired sparsity
patterns.

Small/medium scale: many batch algorithms available, with fast
convergence (IST, FISTA, SpaRSA, ...)

Large scale: online proximal-gradient algorithms suitable to explore
large feature spaces
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Thank you!

Questions?
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Sokolovska, N., Lavergne, T., Cappé, O., and Yvon, F. (2010). Efficient learning of sparse conditional random fields for
supervised sequence labelling. IEEE Journal of Selected Topics in Signal Processing, 4(6):953–964.

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 87 / 88



References V

Stojnic, M., Parvaresh, F., and Hassibi, B. (2009). On the reconstruction of block-sparse signals with an optimal number of
measurements. Signal Processing, IEEE Transactions on, 57(8):3075–3085.

Taylor, H., Bank, S., and McCoy, J. (1979). Deconvolution with the `1 norm. Geophysics, 44:39–52.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B., pages
267–288.

Tikhonov, A. (1943). On the stability of inverse problems. In Dokl. Akad. Nauk SSSR, volume 39, pages 195–198.

Tseng, P. and Yun, S. (2009). A coordinate gradient descent method nonsmooth seperable approximation. Mathematical
Programmin (series B), 117:387–423.

van de Geer, S. (2008). High-dimensional generalized linear models and the lasso. The Annals of Statistics, 36:614–645.

Wiener, N. (1949). Extrapolation, Interpolation, and Smoothing of Stationary Time Series. Wiley, New York.

Williams, P. (1995). Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7:117–143.

Wright, S., Nowak, R., and Figueiredo, M. (2009). Sparse reconstruction by separable approximation. IEEE Transactions on
Signal Processing, 57:2479–2493.

Xiao, L. (2010). Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine
Learning Research, 11:2543–2596.

Yuan, L., Liu, J., and Ye, J. (2011). Efficient methods for overlapping group lasso. In Advances in Neural Information
Processing Systems 24, pages 352–360.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal
Statistical Society (B), 68(1):49.

Yun, S. and Toh, K.-C. (2011). A coordinate gradient descent method for L1-regularized convex minimization. Computational
Optimization and Applications, 48:273–307.

Zhu, J., Lao, N., and Xing, E. (2010). Grafting-light: fast, incremental feature selection and structure learning of markov
random fields. In Proc. of International Conference on Knowledge Discovery and Data Mining, pages 303–312.

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 88 / 88


	Introduction
	Loss Functions and Sparsity
	Structured Sparsity
	Algorithms
	Proximity Operators
	Batch Algorithms
	Online Algorithms

	Applications
	Conclusions

