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Notation

Many machine learning (ML) problems involve learning a mapping from
one space to another. Notation:

Input set X

For each x ∈ X, candidate outputs are Y(x) ⊆ Y

Mapping is hw : X→ Y
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Linear Models

Our predictor will take the form

hw(x) = arg max
y∈Y(x)

w>f(x , y)

where:

f is a vector function that encodes all the relevant things about
(x , y); the result of a theory, our knowledge, feature engineering,
unsupervised feature learning, etc.

w ∈ RD are the weights that parameterize the mapping.

Often, e.g., in natural language processing (NLP) D is very large (> 106).

In some cases (e.g., in NLP), the maximization above is itself challenging.
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Learning Linear Models

We observe a collection of examples {(xn, yn)}N
n=1.

y = mountain y = coast

Learn w from the data, via regularized empirical risk minimization,

ŵ = arg min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical risk

+ Ω(w)︸ ︷︷ ︸
regularizer

Logistic regression, perceptron, conditional random fields, SVM, some
supervised generative models, all fit the linear modeling framework.
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What is Sparsity? Why Is It Important?

The sparsity hypothesis: some/most dimensions of f are not needed
for a good hw; those dimensions can be zero, leading to a sparse w.

The bet on sparsity (Friedman et al., 2004): it’s often correct; if
not, there’s no good solution anyway!

Models with just a few features are:

easier to explain/interpret
cheaper to implement

Generalization:

the goal of ML is to generalize well to new examples
encouraging the use of few features discourages overfitting
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(Automatic) Feature Selection

Domain experts are often good at engineering features.

Can we automate the process of selecting which ones to keep?

Three main classes of methods (Guyon and Elisseeff, 2003):

1 filters

(inexpensive and simple, but very suboptimal)

2 wrappers

(better, but very expensive)

3 embedded methods

(this talk)
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Embedded Methods for Feature Selection

Formulate the learning problem as a trade-off between

minimizing loss (fitting the training data, achieving good accuracy on
the training data, etc.)

choosing a desirable model (e.g., with no more features than needed)

min
w

1

N

N∑
n=1

L(w; xn, yn) + Ω(w)

Key advantage: declarative statements of model “desirability” often lead
to well-understood, solvable optimization problems.
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Loss functions (I)

Regression (y ∈ R) typically uses the squared error loss:

LSE(w; x , y) =
1

2

(
y −w>f(x)

)2

Total loss:

1

2

N∑
n=1

(
yn −w>f(xn)

)2
=

1

2
‖Aw − y‖2

2

Design matrix: Aij = fj (xi ).

Response vector: y = [y1, ..., yN ]>.

The most/best studied loss function (statistics, machine learning,
signal processing); dates back to Legendre and Gauss (early 1800s).
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Loss functions (II)

Classification and structured prediction using log-linear models
(logistic regression, max ent, conditional random fields):

LLR(w; x , y) = − log P (y |x ; w)

= − log
exp(w>f (x , y))∑

y ′∈Y(x) exp(w>f (x , y ′))

= −w>f (x , y) + logZ (w, x)

Partition function:

Z (w, x) =
∑

y ′∈Y(x)

exp(w>f (x , y ′)).

Related loss functions: hinge loss (in SVM) and the perceptron loss.
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Main Loss Functions: Summary

Squared (linear regression) 1
2

(
y −w>f(x)

)2

Log-linear (MaxEnt, CRF, logistic) −w>f(x , y) + log
∑
y ′∈Y

exp(w>f(x , y ′))

Hinge (SVMs) −w>f(x , y) + max
y ′∈Y

(
w>f(x , y ′) + c(y , y ′)

)
Perceptron −w>f(x , y) + max

y ′∈Y
w>f(x , y ′)

(in the SVM loss, c(y , y ′) is a cost function.)

The log-linear, hinge, and perceptron losses are particular cases of general
family (Martins et al., 2010).
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Regularization

Regularized parameter estimate:

ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)︸ ︷︷ ︸
total loss

where Ω(w) ≥ 0 and lim
‖w‖→∞

Ω(w) =∞ (coercive function).

Why regularize?

Improve generalization by avoiding over-fitting.

The total loss may not be coercive (e.g., logistic loss on separable
data), thus having no minima.

Express prior knowledge about w.

Select relevant features (via sparsity-inducing regularization).
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Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).
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w
λΩ̄(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization
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ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

M. Figueiredo (IT, IST, Lisbon, Portugal) Structured Sparsity in ML ICPRAM’2013 14 / 88



Regularization vs. Bayesian estimation

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

...interpretable as Bayesian maximum a posteriori (MAP) estimate:

ŵ = arg max
w

exp (−Ω(w))︸ ︷︷ ︸
prior p(w)

N∏
n=1

exp (−L(w; xn, yn))︸ ︷︷ ︸
likelihood (i.i.d. data)

.

This interpretation underlies the logistic regression (LR) loss:
LLR(w; xn, yn) = − log P (yn|xn; w).

... and the squared error (SE) loss:

LSE(w; xn, yn) = 1
2

(
y −w>f(x)

)2
= − logN(y |w>f(x), 1)
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Norms: A Quick Review

Before focusing on regularizers, a quick review about `p norms.

Examples of norms:

‖w‖p =

(∑
i

|wi |p
)1/p

(called `p norm, for p ≥ 1).

Notable cases:

the famous `1 norm: ‖w‖1 =
∑

i |wi |
the `∞ norm: ‖w‖∞ = lim

p→∞
‖w‖p = max{|wi |, i = 1, ...,D}

Fact: all norms are convex.

The infamous `0 “norm”: ‖w‖0 = lim
p→0
‖w‖p

p = |{i : wi 6= 0}|

(not a norm).
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Classical Regularizers: Ridge

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

Arguably, the most classical choice: squared `2 norm: Ω(w) =
λ

2
‖w‖2

2

Corresponds to zero-mean Gaussian prior p(w) ∝ exp
(
−λ‖w‖2

2

)

Ridge regression (SE loss): Hoerl (1962), Hoerl and Kennard (1970).

Closely related to Tikhonov (1943) and Wiener (1949).

Used early in computer vision (Bertero et al., 1988), (Poggio et al., 1985).

Ridge logistic regression: Schaefer et al. (1984), Cessie and

Houwelingen (1992); in ML: Chen and Rosenfeld (1999).

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection).
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Classical Regularizers: Lasso

Regularized parameter estimate: ŵ = arg min
w

Ω(w) +
N∑

n=1

L(w; xn, yn)

The new classic is the `1 norm: Ω(w) = λ‖w‖1 = λ

D∑
i=1

|wi |.

Corresponds to zero-mean Laplacian prior p(wi ) ∝ exp (−λ|wi |)

Best known as: least absolute shrinkage and selection operator
(Lasso) (Tibshirani, 1996).

Used earlier in signal processing (Claerbout and Muir, 1973; Taylor
et al., 1979) neural networks (Williams, 1995),...

...also in NLP: Kazama and Tsujii (2003); Goodman (2004).

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: more challenging optimization.
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The Lasso and Sparsity
Why does the Lasso yield sparsity?

The simplest (1D) case:

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =


y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w2 =

1

1 + λ
y
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The Lasso and Sparsity (II)

Why does the Lasso yield sparsity?
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Why does the Lasso yield sparsity?
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Relevant Theory?

Theoretical results for `1-regularized logistic regression:

PAC-Bayesian bounds (generalization improves with sparsity):
Krishnapuram et al. (2005)

Logarithmic sample complexity (versus linear, for ridge) Ng (2004)

Oracle bounds (van de Geer, 2008)

Consistency (Negahban et al., 2012)
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Models

`1 regularization promotes sparse models

A very simple sparsity pattern: small cardinality

Main question: how to promote less trivial sparsity patterns?
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Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if prior assumptions are correct (Stojnic et al., 2009)

Many applications:

feature template selection (Martins et al., 2011b)

multi-task learning (Caruana, 1997; Obozinski et al., 2010)

multiple kernel learning (Lanckriet et al., 2004)

learning the structure of graphical models (Schmidt and Murphy, 2010)
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“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid
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Example 1: Sparsity with Multiple Classes

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we may still need all the input features

What we want: discard some input features

Solution: one group per input feature
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Example 2: Multi-Task Learning
(Caruana, 1997; Obozinski et al., 2010)

Same thing, except now rows are tasks and columns are features

shared features

ta
sk

s

What we want: discard features that are irrelevant for all tasks

Solution: one group per feature
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Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)
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Lasso versus group-Lasso
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Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary groups
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Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)
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Example: Magnetoencephalographic (MEG)
Reconstruction

Group: localized cortex area at localized time period (Bolstad et al., 2009)
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Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary groups
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Tree-Structured Groups

Assumption: if two groups overlap, one contains the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded
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Main messages:

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps
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Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi )︸ ︷︷ ︸
total loss

,

Two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (use the training examples one by one)
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A Key Ingredient: Proximity Operators
Let Ω : RD → R̄ be a convex function.

The Ω-proximity operator is the RD → RD map (Moreau, 1962)

w 7→ proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

...always well defined, because ‖u−w‖2
2 is strictly convex.

Classical examples:

Squared `2 regularization, Ω(w) = λ
2‖w‖

2
2: scaling operation

proxΩ(w) =
1

1 + λ
w

`1 regularization, Ω(w) = λ‖w‖1: soft-thresholding;

proxΩ(w) = soft(w, λ)
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Proximity Operators (II)

proxΩ(w) = arg min
u

1

2
‖u−w‖2

2 + Ω(u)

`2 regularization, Ω(w) = λ‖w‖2: vector soft thresholding

proxΩ(w) =

{
0 ⇐ ‖w‖ ≤ λ

w
‖w‖ (‖w‖ − λ) ⇐ ‖w‖ > λ

indicator function, Ω(w) = ιS(w) =

{
0 ⇐ w ∈ S

+∞ ⇐ w 6∈ S

proxΩ(w) = PS(w)

Euclidean projection
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Proximity Operators (III)

Group regularizers: Ω(w) =
M∑

m=1

Ωm(wm)

Groups: Gm ⊂ {1, 2, ...,D}. wm is the sub-vector with the indices in Gm.

Non-overlapping (Gm ∩ Gn = ∅, for m 6= n): separable prox operator

[proxΩ(w)]m = proxΩm
(wm)

Tree-structured: (two groups are either disjoint or one contais the
other) proxΩ can be computed recursively (Jenatton et al., 2011).

Arbitrary groups:
For Ωm(wm) = ‖wm‖2: solved by convex smooth optimization (Yuan
et al., 2011).
Sequential proximity steps (Martins et al., 2011a) (more later).
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(Block-)Coordinate Descent

minw Ω(w) + Λ(w), where Λ(w) = 1
N

∑N
i=1 L(w, xi , yi ) (loss)

Update one (block of) component(s) of w at a time:

w new
i ← arg min

wi

Ω([w1, ...,wi , ...wD ]) + Λ([w1, ...,wi , ...wD ])

(Genkin et al., 2007; Krishnapuram et al., 2005; Liu et al., 2009; Shevade and

Keerthi, 2003; Tseng and Yun, 2009; Yun and Toh, 2011)

Squared error loss: closed-form solution. Other losses (e.g., logistic):

solve numerically, e.g., Newton steps (Shevade and Keerthi, 2003).

use local quadratic approximation/bound (Krishnapuram et al., 2005;
Tseng and Yun, 2009; Yun and Toh, 2011).

Shown to converge; competitive with state-of-the-art (Yun and Toh, 2011).

Has been used in NLP: Sokolovska et al. (2010); Lavergne et al. (2010).
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Projected Gradient
Instead of min

w
Ω(w) + Λ(w) , address min

w
Λ(w) subject to Ω(w) ≤ τ

Building blocks:

loss gradient ∇̃Λ(w)

Euclidean projection PS(w), where S = {w : Ω(w) ≤ τ}

w← PS(w − η∇̃Λ(w))

...maybe using line search to adjust the step length.

Example: for S = {w : ‖w‖1 ≤ τ}, projection PS(w) has O(D logD) cost
(Duchi et al., 2008).

Viable and competitive method, which has been used in machine learning,
including in NLP (Duchi et al., 2008; Quattoni et al., 2009).

Shown later: projected gradient is a particular instance of the more
general proximal gradient methods.
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general proximal gradient methods.
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From Gradient to Hessian: Newton’s Method

Assume F (w) = Ω(w) + Λ(w) is twice-differentiable.

Second order (quadratic) Taylor expansion around w′:

F (w) ≈ F (w′) +∇F (w′)︸ ︷︷ ︸
Gradient

>
(w −w′) +

1

2
(w −w′)> H(w′)︸ ︷︷ ︸

Hessian:

(w −w′)

Use the direction that minimizes this quadratic approximation:

w ← w − α(H(w))−1∇F (w)

with stepsize α usually determined by line search.

Drawback: may be costly (or impossible) to compute and invert the
Hessian! O(D3) for a näıve approach.

Quasi-Newton methods, namely L-BFGS, approximate the inverse
Hessian directly from past gradient information.
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Proximal Gradient

Recall the problem: min
w

Ω(w) + Λ(w)

Key assumptions: ∇Λ(w) and proxΩ “easy”.

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt))

Key feature: each steps decouples the loss and the regularizer.

Projected gradient is a particular case, for proxΩ = PS.

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).
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Monotonicity and Convergence

Proximal gradient, a.k.a., iterative shrinkage thresholding (IST):

wt+1 ← proxηt Ω (wt − ηt∇Λ(wt)) .

Monotonicity: if ηt ≤ 1/L, then Λ(wt+1) + Ω(wt+1) ≤ Λ(wt) + Ω(wt).

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t

)

Important: monotonicity doesn’t imply convergence of w1,w2, ...,wt , ....

Convergence (even with inexact steps) proved for ηt ≤ 2/L (Combettes
and Wajs, 2006).
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Accelerating IST: SpaRSA

The step sizes ηt ≤ 2/L (guarantees convergence) and ηt ≤ 1/L
(monotonicity) are too conservative.

A bolder choice: let ηt mimic a Newton step (Barzilai and Borwein, 1988),

1

ηt
I ∼ H(wt) (Hessian)

Approximation in the mean squared sense over the previous step:

1

ηt
= arg min

α
‖α(wt −wt−1)− (∇Λ(wt)−∇Λ(wt−1))‖2

Resulting algorithm: SpaRSA (sparse reconstruction by separable
approximation); shown to converge and to be fast Wright et al. (2009).
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Accelerating IST: FISTA

Idea: compute wt+1 based, not only on wt , but also on wt−1.

Fast IST algorithm (FISTA) (Beck and Teboulle, 2009):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Convergence of objective value (Beck and Teboulle, 2009)

(
Λ(wt) + Ω(wt)

)
−
(
Λ(w∗) + Ω(w∗)

)
= O

(
1

t2

)
(vs O(1/t) for IST)

Convergence of iterates has not been shown.
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Least Angle Regression (LARS)
LARS only applies to ŵ(λ) = arg min

w
λ‖w‖1 + ‖Aw − y‖2

Key ideas (Efron et al., 2004; Osborne et al., 2000)

“regularization path” ŵ(λ) is piecewise linear (Markowitz, 1952);
the cusps can be identified in closed form;
simply jump from one cusp to the next.

Cons: doesn’t apply to group regularizers; exponential worst case
complexity (Mairal and Yu, 2012).
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Homotopy/Continuation Methods

LARS is related to a more general family: homotopy/continuation
methods.

Consider ŵ(λ) = arg min
w

λΩ̄(w) + Λ(w)

Key ideas

start with high value of λ, such that ŵ(λ) is easy (e.g., zero);

slowly decrease λ while “tracking” the solution;

“tracking” means: use the previous ŵ(λ) to “warm start” the solver
for the next problem.

It’s a meta-algorithm of general applicability when using “warm startable”
solvers (Figueiredo et al., 2007; Hale et al., 2008; Osborne et al., 2000).
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Some Stuff We Didn’t Talk About

shooting method (Fu, 1998)

grafting (Perkins et al., 2003) and grafting-light (Zhu et al., 2010)

orthant-wise limited-memory quasi-Newton (OWL-QN) (Andrew and
Gao, 2007; Gao et al., 2007); doesn’t handle overlapping groups

alternating direction method of multipliers (ADMM); handles
overlapping groups (Afonso et al., 2010; Figueiredo and Bioucas-Dias,
2011).

forward stagewise regression (Hastie et al., 2007);

...several more; this is an active research area!
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Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning (“the
tradeoffs of large scale learning” by Bottou and Bousquet (2007))
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Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi )︸ ︷︷ ︸
empirical loss

,

input: stepsize sequence (ηt)T
t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for
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SGD with Sparsity?

(Sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)

`2-regularization Ω(w) = λ
2‖w‖

2
2 =⇒ ∇̃Ω(w) = λw

w ← (1− ηtλ)w︸ ︷︷ ︸
scaling

− ηt∇̃L(w; xt , yt)

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)
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Plain SGD with `2-regularization
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“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)
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Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations
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Online Forward-Backward Splitting (Duchi and
Singer, 2009)

input: stepsize sequences (ηt)T
t=1, (ρt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(w; xt , yt)
proximal step: w ← proxρt Ω(w)

end for

generalizes truncated gradient to arbitrary regularizers Ω
can tackle non-overlapping or hierarchical group-Lasso, but arbitrary
overlaps are difficult to handle (more later)

practical drawback: iterates are usually not very sparse

converges to ε-accurate objective after O(1/ε2) iterations
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What About Group Sparsity?

Online forward-backward splitting (Duchi and Singer, 2009) handles
groups.

All that is necessary is to compute proxΩ(w)

easy for non-overlapping and tree-structured groups

But what about general overlapping groups?

Martins et al. (2011a): a prox-grad algorithm that can handle arbitrary
overlapping groups

decompose Ω(w) =
∑J

j=1 Ωj (w) where each Ωj is non-overlapping

then apply proxΩj
sequentially

still convergent (Martins et al., 2011a)
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Online Proximal Gradient (Martins et al., 2011a)

input: gravity sequence (σt)T
t=1, stepsize sequence (ηt)T

t=1

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(θ; xt , yt)
sequential proximal steps:
for j = 1, 2, . . . do

w ← proxηtσt Ωj
(w)

end for
end for

PAC Convergence: ε-accurate solution after T ≤ O(1/ε2) rounds

Computational efficiency: Each gradient step is linear in the
number of features.
Each proximal step is linear in the number of groups M.
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Summary of Algorithms

Converges Rate Sparse Groups Overlaps
Coord. desc. X ? X Maybe No
Prox-grad X O(1/ε) Yes/No X Not easy
OWL-QN X ? Yes/No No No
SpaRSA X O(1/ε) or better Yes/No X Not easy
FISTA X O(1/

√
ε) Yes/No X Not easy

ADMM X O(1/ε), O(1/
√
ε) No X X

Online subgrad. X O(1/ε2) No X No
Truncated grad. X O(1/ε2) X No No
FOBOS X O(1/ε2) Sort of X Not easy
Online prox-grad X O(1/ε2) X X X
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Applications of Structured Sparsity in ML

Relatively few to date; we will focus on several recent NLP applications
(Martins et al., 2011b):

Phrase chunking

Named entity recognition

Dependency parsing
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Martins et al. (2011b): Group by Template

Feature templates provide a straightforward way to define non-overlapping
groups.

To achieve group sparsity, we optimize:

min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical loss

+ Ω(w)︸ ︷︷ ︸
regularizer

where we use the `2,1 norm (group Lasso):

Ω(w) = λ

M∑
m=1

dm‖wm‖2

for M groups/templates.
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Chunking

x = “He reckons the current account deficit will narrow to only $ 1.8 billion in

September”

CoNLL 2000 shared task (Sang and Buchholz, 2000)

Unigram features: 96 feature templates using POS tags, words, and
word shapes, with various context sizes

Bigram features: 1 template indicating the label bigram

Baseline: L2-regularized MIRA, 15 epochs, all features,
cross-validation to choose regularization strength

Template-based group lasso: 5 epochs of sparseptron + 10 of
MIRA
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Chunking Experiments

Baseline Template-based group lasso
# templates 96 10 20 30 40
model size 5,300,396 71,075 158,844 389,065 662,018
F1 (%) 93.10 92.99 93.28 93.59 93.42
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Chunking
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MIRA
Sparceptron + MIRA (B=30)

Memory requirement of sparseptron is < 7.5% of that of the baseline.
(Oscillations are due to proximal steps after every 1,000 instances.)
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Named Entity Recognition

CoNLL 2002/2003 shared tasks (Sang, 2002; Sang and De Meulder,
2003): Spanish, Dutch, and English

Unigram features: 452 feature templates using POS tags, words, word
shapes, prefixes, suffixes, and other string features, all with various
context sizes

Bigram features: 1 template indicating the label bigram

Baselines:
L2-regularized MIRA, 15 epochs, all features, cross-validation to choose
regularization strength
sparseptron with lasso, different values of C

Template-based group lasso: 5 epochs of sparseptron + 10 of
MIRA
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Applications of Structured Sparsity in ML
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Non-projective Dependency Parsing

CoNLL-X shared task (Buchholz and Marsi, 2006): Arabic, Danish,
Dutch, Japanese, Slovene, and Spanish

Arc-factored models (McDonald et al., 2005)

684 feature templates by conjoining words, shapes, lemmas, and POS
of the head and the modifier, contextual POS, distance and
attachment direction

Baselines:

MIRA with all features
filter-based template selection (information gain)
standard lasso

Our methods: template-based group lasso; coarse-to-fine
regularization

Budget sizes: 200, 300, and 400
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Non-projective Dependency Parsing (c’ed)
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Template-based group lasso is better at selecting feature templates than
the IG criterion, and slightly better than coarse-to-fine.
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Summary

Sparsity is desirable in machine learning: feature selection, runtime,
memory footprint, interpretability

Beyond plain sparsity: structured sparsity can be promoted through
group-Lasso regularization

Choice of groups reflects prior knowledge about the desired sparsity
patterns.

Small/medium scale: many batch algorithms available, with fast
convergence (IST, FISTA, SpaRSA, ...)

Large scale: online proximal-gradient algorithms suitable to explore
large feature spaces
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Thank you!

Questions?
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