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Outline

• Introduction: Sparse methods for machine learning

– Need for structured sparsity: Going beyond the ℓ1-norm

• Classical approaches to structured sparsity

– Linear combinations of ℓq-norms

– Applications

• Structured sparsity through submodular functions

– Relaxation of the penalization of supports

– Unified algorithms and analysis



Sparsity in supervised machine learning

• Observed data (xi, yi) ∈ R
p × R, i = 1, . . . , n

– Response vector y = (y1, . . . , yn)
⊤ ∈ R

n

– Design matrix X = (x1, . . . , xn)
⊤ ∈ R

n×p

• Regularized empirical risk minimization:

min
w∈Rp

1

n

n
∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w) = min

w∈Rp
L(y,Xw) + λΩ(w)

• Norm Ω to promote sparsity

– square loss + ℓ1-norm ⇒ basis pursuit in signal processing (Chen

et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)



Sparsity in unsupervised machine learning

• Multiple responses/signals y = (y1, . . . , yk) ∈ R
n×k

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}
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X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑
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• Only responses are observed ⇒ Dictionary learning

– Learn X = (x1, . . . , xp) ∈ R
n×p such that ∀j, ‖xj‖2 6 1

min
X=(x1,...,xp)

min
w1,...,wk∈Rp

k
∑

j=1

{

L(yj,Xwj) + λΩ(wj)
}

– Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.

(2009a)

• sparse PCA: replace ‖xj‖2 6 1 by Θ(xj) 6 1



Sparsity in signal processing

• Multiple responses/signals x = (x1, . . . , xk) ∈ R
n×k

min
D=(d1,...,dp)

min
α1,...,αk∈Rp

k
∑

j=1

{

L(xj,Dαj) + λΩ(αj)
}

• Only responses are observed ⇒ Dictionary learning

– Learn D = (d1, . . . , dp) ∈ R
n×p such that ∀j, ‖dj‖2 6 1

min
D=(d1,...,dp)

min
α1,...,αk∈Rp

k
∑

j=1

{

L(xj,Dαj) + λΩ(αj)
}

– Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.

(2009a)

• sparse PCA: replace ‖dj‖2 6 1 by Θ(dj) 6 1



Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Structured sparse PCA (Jenatton et al., 2009b)

raw data sparse PCA

• Unstructed sparse PCA ⇒ many zeros do not lead to better

interpretability
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Why structured sparsity?

• Interpretability

– Structured dictionary elements (Jenatton et al., 2009b)

– Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

• Stability and identifiability

– Optimization problem minw∈Rp L(y,Xw) + λ‖w‖1 is unstable

– “Codes” wj often used in later processing (Mairal et al., 2009c)

• Prediction or estimation performance

– When prior knowledge matches data (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

• Numerical efficiency

– Non-linear variable selection with 2p subsets (Bach, 2008)



Classical approaches to structured sparsity

• Many application domains

– Computer vision (Cevher et al., 2008; Mairal et al., 2009b)

– Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al.,

2011)

– Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

• Non-convex approaches

– Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.

(2009)

• Convex approaches

– Design of sparsity-inducing norms
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Sparsity-inducing norms

• Popular choice for Ω

– The ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– with H a partition of {1, . . . , p}

– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping

variables (as opposed to single variables for the ℓ1-norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)

G

2G

3G

1



Unit norm balls

Geometric interpretation

‖w‖2 ‖w‖1
√

w2
1 + w2

2 + |w3|



Sparsity-inducing norms

• Popular choice for Ω

– The ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– with H a partition of {1, . . . , p}

– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping

variables (as opposed to single variables for the ℓ1-norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)

G
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3G

1

• However, the ℓ1-ℓ2 norm encodes fixed/static prior information,

requires to know in advance how to group the variables

• What happens if the set of groups H is not a partition anymore?



Structured sparsity with overlapping groups

(Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some wG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity
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Structured sparsity with overlapping groups

(Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ1-ℓ2 norm,

∑

G∈H

‖wG‖2 =
∑

G∈H

(

∑

j∈G

w2
j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some wG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity

GG2

1G

3G

2

• The zero pattern of w is given by

{j, wj = 0} =
⋃

G∈H′

G for some H
′ ⊆ H

• Zero patterns are unions of groups



Examples of set of groups H

• Selection of contiguous patterns on a sequence, p = 6

– H is the set of blue groups

– Any union of blue groups set to zero leads to the selection of a

contiguous pattern



Examples of set of groups H

• Selection of rectangles on a 2-D grids, p = 25

– H is the set of blue/green groups (with their not displayed

complements)

– Any union of blue/green groups set to zero leads to the selection

of a rectangle



Examples of set of groups H

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

– It is possible to extend such settings to 3-D space, or more complex

topologies



Unit norm balls

Geometric interpretation

‖w‖1
√

w2
1 + w2

2 + |w3| ‖w‖2 + |w1|+ |w2|



Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

L(wt) + (w − wt)
⊤∇L(wt)+

B

2
‖w − wt‖

2
2

– wt+1 = wt −
1
B∇L(wt)



Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

L(wt) + (w − wt)
⊤∇L(wt)+

B

2
‖w − wt‖

2
2

– wt+1 = wt −
1
B∇L(wt)

• Problems of the form: min
w∈Rp

L(w) + λΩ(w)

– wt+1 = arg min
w∈Rp

L(wt)+(w−wt)
⊤∇L(wt)+λΩ(w)+

B

2
‖w − wt‖

2
2

– Ω(w) = ‖w‖1 ⇒ Thresholded gradient descent

• Similar convergence rates than smooth optimization

– Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Comparison of optimization algorithms

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Small scale

• Specific norms which can be implemented through network flows
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Comparison of optimization algorithms

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Large scale

• Specific norms which can be implemented through network flows
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Approximate proximal methods

(Schmidt, Le Roux, and Bach, 2011)

• Exact computation of proximal operator arg min
w∈Rp

1

2
‖w−z‖22+λΩ(w)

– Closed form for ℓ1-norm

– Efficient for overlapping group norms (Jenatton et al., 2010; Mairal

et al., 2010)

• Convergence rate: O(1/t) and O(1/t2) (with acceleration)

• Gradient or proximal operator may be only approximate

– Preserved convergence rate with appropriate control

– Approximate gradient with non-random errors

– Complex regularizers



Stochastic approximation

(Bach and Moulines, 2011)

• Loss = generalization error L(w) = E(x,y)ℓ(y,w
⊤x)

• Stochastic approximation: optimizing L(w) given a sequence of

samples (xt, yt), t = 1, . . . , n

• Context: large-scale learning (large n)

• Main algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

– Iteration: wt = wt−1 − γt
∂

∂w
ℓ(yt, w

⊤xt)
∣

∣

w=wt−1

– Classical choice in machine learning: γt = C/t ⇒ Wrong choice

• Good choice: Use averaging of iterates with γt = C/t1/2

– Robustness to difficulty of the problem and to the setting of C



Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Input ℓ1-norm Structured norm



Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background ℓ1-norm Structured norm



Application to neuro-imaging

Structured sparsity for fMRI (Jenatton et al., 2011)

• “Brain reading”: prediction of (seen) object size

• Multi-scale activity levels through hierarchical penalization
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Application to neuro-imaging

Structured sparsity for fMRI (Jenatton et al., 2011)

• “Brain reading”: prediction of (seen) object size

• Multi-scale activity levels through hierarchical penalization



Sparse Structured PCA

(Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi−Xwi‖22+λ

p
∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1



Application to face databases (1/3)

raw data (unstructured) NMF

• NMF obtains partially local features



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases (3/3)

• Quantitative performance evaluation on classification task
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Structured sparse PCA on resting state activity

(Varoquaux, Jenatton, Gramfort, Obozinski, Thirion,

and Bach, 2010)



Dictionary learning vs. sparse structured PCA

Exchange roles of X and w

• Sparse structured PCA (structured dictionary elements):

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi−Xwi‖22+λ
k

∑

j=1

Ω(xj) s.t. ∀i, ‖wi‖2 ≤ 1.

• Dictionary learning with structured sparsity for codes w:

min
W∈Rk×n,X∈Rp×k

1

n

n
∑

i=1

‖yi −Xwi‖22 + λΩ(wi) s.t. ∀j, ‖xj‖2 ≤ 1.

• Optimization:

– Alternating optimization

– Modularity of implementation if proximal step is efficient

(Jenatton et al., 2010; Mairal et al., 2010)



Hierarchical dictionary learning

(Jenatton, Mairal, Obozinski, and Bach, 2010)

• Structure on codes w (not on dictionary X)

• Hierarchical penalization: Ω(w) =
∑

G∈H
‖wG‖2 where groups G

in H are equal to set of descendants of some nodes in a tree

• Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)



Hierarchical dictionary learning

Modelling of text corpora

• Each document is modelled through word counts

• Low-rank matrix factorization of word-document matrix

• Probabilistic topic models (Blei et al., 2003)

– Similar structures based on non parametric Bayesian methods (Blei

et al., 2004)

– Can we achieve similar performance with simple matrix

factorization formulation?



Modelling of text corpora - Dictionary tree



Structured sparsity - Audio processing

Source separation (Lefèvre et al., 2011)
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Structured sparsity - Audio processing

Musical instrument separation (Lefèvre et al., 2011)

• Unsupervised source separation with group-sparsity prior

– Top: mixture

– Left: source tracks (guitar, voice). Right: separated tracks.
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ℓ1-norm = convex envelope of cardinality of support

• Let w ∈ R
p. Let V = {1, . . . , p} and Supp(w) = {j ∈ V, wj 6= 0}

• Cardinality of support: ‖w‖0 = Card(Supp(w))

• Convex envelope = largest convex lower bound (see, e.g., Boyd and

Vandenberghe, 2004)

1

0

||w||

||w||

−1 1

• ℓ1-norm = convex envelope of ℓ0-quasi-norm on the ℓ∞-ball [−1, 1]p



Convex envelopes of general functions of the support

(Bach, 2010)

• Let F : 2V → R be a set-function

– Assume F is non-decreasing (i.e., A ⊂ B ⇒ F (A) 6 F (B))

– Explicit prior knowledge on supports (Haupt and Nowak, 2006;

Baraniuk et al., 2008; Huang et al., 2009)

• Define Θ(w) = F (Supp(w)): How to get its convex envelope?

1. Possible if F is also submodular

2. Allows unified theory and algorithm

3. Provides new regularizers



Submodular functions (Fujishige, 2005; Bach, 2010)

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing
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Submodular functions (Fujishige, 2005; Bach, 2010)

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing

• Intuition 1: defined like concave functions (“diminishing returns”)

– Example: F : A 7→ g(Card(A)) is submodular if g is concave

• Intuition 2: behave like convex functions

– Polynomial-time minimization, conjugacy theory

• Used in several areas of signal processing and machine learning

– Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)

– Optimal design (Krause and Guestrin, 2005)



Submodular functions - Examples

• Concave functions of the cardinality: g(|A|)

• Cuts

• Entropies

– H((Xk)k∈A) from p random variables X1, . . . ,Xp

• Network flows

– Efficient representation for set covers

• Rank functions of matroids



Submodular functions - Lovász extension

• Subsets may be identified with elements of {0, 1}p

• Given any set-function F and w such that wj1 > · · · > wjp, define:

f(w) =

p
∑

k=1

wjk[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

– If w = 1A, f(w) = F (A) ⇒ extension from {0, 1}p to R
p

– f is piecewise affine and positively homogeneous

• F is submodular if and only if f is convex (Lovász, 1982)

– Minimizing f(w) on w ∈ [0, 1]p equivalent to minimizing F on 2V



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F



Submodular functions and structured sparsity

• Let F : 2V → R be a non-decreasing submodular set-function

• Proposition: the convex envelope of Θ : w 7→ F (Supp(w)) on the

ℓ∞-ball is Ω : w 7→ f(|w|) where f is the Lovász extension of F

• Sparsity-inducing properties: Ω is a polyhedral norm

(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

– A if stable if for all B ⊃ A, B 6= A ⇒ F (B) > F (A)

– With probability one, stable sets are the only allowed active sets



Polyhedral unit balls

w
2

w
3

w
1

F (A) = |A|
Ω(w) = ‖w‖1

F (A) = min{|A|, 1}
Ω(w) = ‖w‖∞

F (A) = |A|1/2

all possible extreme points

F (A) = 1{A∩{1}6=∅} + 1{A∩{2,3}6=∅}

Ω(w) = |w1|+ ‖w{2,3}‖∞

F (A) = 1{A∩{1,2,3}6=∅}

+1{A∩{2,3}6=∅}+1{A∩{3}6=∅}

Ω(w) = ‖w‖∞ + ‖w{2,3}‖∞ + |w3|



Submodular functions and structured sparsity

• Unified theory and algorithms

– Generic computation of proximal operator

– Unified oracle inequalities

• Extensions

– Shaping level sets through symmetric submodular function (Bach,

2011)

– ℓq-relaxations of combinatorial penalties (Obozinski and Bach,

2011)



Conclusion

• Structured sparsity for machine learning and statistics

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– Link with submodular functions: unified analysis and algorithms



Conclusion

• Structured sparsity for machine learning and statistics

– Many applications (image, audio, text, etc.)

– May be achieved through structured sparsity-inducing norms

– Link with submodular functions: unified analysis and algorithms

• On-going/related work on structured sparsity

– Norm design beyond submodular functions

– Complementary approach of Jacob, Obozinski, and Vert (2009)

– Theoretical analysis of dictionary learning (Jenatton, Bach and

Gribonval, 2011)

– Achieving log p = O(n) algorithmically (Bach, 2008)
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