Structured sparsity through convex optimization

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with R. Jenatton, J. Mairal, G. Obozinski ICPRAM - February 2012

Outline

- Introduction: Sparse methods for machine learning
 - Need for structured sparsity: Going beyond the ℓ_1 -norm
- Classical approaches to structured sparsity
 - Linear combinations of ℓ_q -norms
 - Applications
- Structured sparsity through submodular functions
 - Relaxation of the penalization of supports
 - Unified algorithms and analysis

Sparsity in supervised machine learning

- Observed data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, $i = 1, \dots, n$
 - Response vector $y = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$
 - Design matrix $X = (x_1, \ldots, x_n)^\top \in \mathbb{R}^{n \times p}$
- Regularized empirical risk minimization:

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda \Omega(w) = \left[\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w) \right]$$

- Norm Ω to promote sparsity
 - square loss + ℓ_1 -norm \Rightarrow basis pursuit in signal processing (Chen et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
 - Proxy for interpretability
 - Allow high-dimensional inference: $\log p$

$$\log p = O(n)$$

Sparsity in unsupervised machine learning

• Multiple responses/signals $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$

$$\min_{w^1,\dots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

Sparsity in unsupervised machine learning

• Multiple responses/signals $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$

$$\min_{w^1,\dots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

- Only responses are observed \Rightarrow **Dictionary learning**
 - Learn $X = (x^1, \dots, x^p) \in \mathbb{R}^{n \times p}$ such that $\forall j, \|x^j\|_2 \leqslant 1$

$$\min_{X=(x^1,\ldots,x^p)} \min_{w^1,\ldots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al. (2009a)
- sparse PCA: replace $||x^j||_2 \leq 1$ by $\Theta(x^j) \leq 1$

Sparsity in signal processing

• Multiple responses/signals $x = (x^1, \dots, x^k) \in \mathbb{R}^{n \times k}$

$$\min_{\alpha^1,\dots,\alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Only responses are observed \Rightarrow **Dictionary learning**
 - Learn $D = (d^1, \dots, d^p) \in \mathbb{R}^{n \times p}$ such that $\forall j, \|d^j\|_2 \leq 1$

$$\min_{D=(d^1,\ldots,d^p)} \min_{\alpha^1,\ldots,\alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.
 (2009a)
- sparse PCA: replace $||d^j||_2 \leq 1$ by $\Theta(d^j) \leq 1$

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

raw data

sparse PCA

 \bullet Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability

raw data

sparse PCA

 \bullet Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability

raw data

Structured sparse PCA

• Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

raw data

Structured sparse PCA

• Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

Modelling of text corpora (Jenatton et al., 2010)

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

• Stability and identifiability

- Optimization problem $\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \|w\|_1$ is unstable
- "Codes" w^j often used in later processing (Mairal et al., 2009c)

• Prediction or estimation performance

 When prior knowledge matches data (Haupt and Nowak, 2006; Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

• Numerical efficiency

- Non-linear variable selection with 2^p subsets (Bach, 2008)

Classical approaches to structured sparsity

• Many application domains

- Computer vision (Cevher et al., 2008; Mairal et al., 2009b)
- Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al., 2011)
- Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

• Non-convex approaches

Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al. (2009)

• Convex approaches

- Design of sparsity-inducing norms

Outline

- Introduction: Sparse methods for machine learning
 - Need for structured sparsity: Going beyond the ℓ_1 -norm
- Classical approaches to structured sparsity
 - Linear combinations of ℓ_q -norms
 - Applications
- Structured sparsity through submodular functions
 - Relaxation of the penalization of supports
 - Unified algorithms and analysis

Sparsity-inducing norms

• Popular choice for Ω

– The ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- with ${\bf H}$ a partition of $\{1,\ldots,p\}$
- The ℓ_1 - ℓ_2 norm sets to zero groups of non-overlapping variables (as opposed to single variables for the ℓ_1 -norm)
- For the square loss, group Lasso (Yuan and Lin, 2006)

Unit norm balls Geometric interpretation

 $||w||_2$

 $||w||_1$

 $\sqrt{w_1^2 + w_2^2} + |w_3|$

Sparsity-inducing norms

• Popular choice for Ω

– The ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- with ${\bf H}$ a partition of $\{1,\ldots,p\}$
- The ℓ_1 - ℓ_2 norm sets to zero groups of non-overlapping variables (as opposed to single variables for the ℓ_1 -norm)
- For the square loss, group Lasso (Yuan and Lin, 2006)
- However, the ℓ_1 - ℓ_2 norm encodes **fixed/static prior information**, requires to know in advance how to group the variables

 $|G_3|$

 \bullet What happens if the set of groups ${\bf H}$ is not a partition anymore?

Structured sparsity with overlapping groups (Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- The ℓ_1 norm induces sparsity at the group level:
 - * Some w_G 's are set to zero
- Inside the groups, the ℓ_2 norm does not promote sparsity

Structured sparsity with overlapping groups (Jenatton, Audibert, and Bach, 2009a)

- When penalizing by the ℓ_1 - ℓ_2 norm,
 - $\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$
 - The ℓ_1 norm induces sparsity at the group level:
 - * Some w_G 's are set to zero
 - Inside the groups, the ℓ_2 norm does not promote sparsity
- The zero pattern of w is given by

$$\{j, w_j = 0\} = \bigcup_{G \in \mathbf{H}'} G$$
 for some $\mathbf{H}' \subseteq \mathbf{H}$

• Zero patterns are unions of groups

Examples of set of groups ${\bf H}$

• Selection of contiguous patterns on a sequence, p=6

- ${\bf H}$ is the set of blue groups
- Any union of blue groups set to zero leads to the selection of a contiguous pattern

Examples of set of groups ${\bf H}$

 \bullet Selection of rectangles on a 2-D grids, p=25

- H is the set of blue/green groups (with their not displayed complements)
- Any union of blue/green groups set to zero leads to the selection of a rectangle

Examples of set of groups ${\bf H}$

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

 It is possible to extend such settings to 3-D space, or more complex topologies

Unit norm balls Geometric interpretation

Optimization for sparsity-inducing norms (see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a **proximal method** (differentiable functions)

$$-w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^\top \nabla L(w_t) + \frac{B}{2} ||w - w_t||_2^2$$

$$-w_{t+1} = w_t - \frac{1}{B} \nabla L(w_t)$$

Optimization for sparsity-inducing norms (see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a **proximal method** (differentiable functions)

$$-w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^\top \nabla L(w_t) + \frac{B}{2} ||w - w_t||_2^2$$

$$-w_{t+1} = w_t - \frac{1}{B} \nabla L(w_t)$$

• Problems of the form: $\lim_{w \in \mathbb{R}^p} L(w) + \lambda \Omega(w)$

 $-w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^\top \nabla L(w_t) + \lambda \Omega(w) + \frac{B}{2} ||w - w_t||_2^2$ - $\Omega(w) = ||w||_1 \Rightarrow$ Thresholded gradient descent

- Similar convergence rates than smooth optimization
 - Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010) Small scale

• Specific norms which can be implemented through network flows

Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010) Large scale

• Specific norms which can be implemented through network flows

Approximate proximal methods (Schmidt, Le Roux, and Bach, 2011)

- Exact computation of proximal operator $\arg\min_{w\in\mathbb{R}^p}\frac{1}{2}\|w-z\|_2^2+\lambda\Omega(w)$
 - Closed form for $\ell_1\text{-norm}$
 - Efficient for overlapping group norms (Jenatton et al., 2010; Mairal et al., 2010)
- Convergence rate: O(1/t) and $O(1/t^2)$ (with acceleration)
- Gradient or proximal operator may be only approximate
 - Preserved convergence rate with appropriate control
 - Approximate gradient with non-random errors
 - Complex regularizers

Stochastic approximation (Bach and Moulines, 2011)

- Loss = generalization error $L(w) = \mathbb{E}_{(x,y)} \ell(y, w^{\top} x)$
- Stochastic approximation: optimizing L(w) given a sequence of samples (x_t, y_t), t = 1,...,n
- Context: large-scale learning (large n)
- Main algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)
 - Iteration: $w_t = w_{t-1} \gamma_t \frac{\partial}{\partial w} \ell(y_t, w^{\top} x_t) \big|_{w = w_{t-1}}$
 - Classical choice in machine learning: $\gamma_t = C/t \Rightarrow$ Wrong choice
- Good choice: Use averaging of iterates with $\gamma_t = C/t^{1/2}$
 - Robustness to difficulty of the problem and to the setting of ${\cal C}$

Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

Input

 ℓ_1 -norm

Structured norm

Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

Background

 ℓ_1 -norm

Structured norm

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Sparse Structured PCA (Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^{i} - Xw^{i}\|_{2}^{2} + \lambda \sum_{j=1}^{p} \Omega(x^{j}) \text{ s.t. } \forall i, \|w^{i}\|_{2} \leq 1$$

Application to face databases (1/3)

• NMF obtains partially local features

Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

 \bullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

 \bullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (3/3)

• Quantitative performance evaluation on classification task

Structured sparse PCA on resting state activity (Varoquaux, Jenatton, Gramfort, Obozinski, Thirion, and Bach, 2010)

Dictionary learning vs. sparse structured PCA Exchange roles of X and w

• Sparse structured PCA (structured dictionary elements):

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^i - Xw^i\|_2^2 + \lambda \sum_{j=1}^{k} \Omega(x^j) \text{ s.t. } \forall i, \ \|w^i\|_2 \le 1$$

• Dictionary learning with structured sparsity for codes w:

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^i - Xw^i\|_2^2 + \lambda \Omega(w^i) \text{ s.t. } \forall j, \|x^j\|_2 \leq 1.$$

- Optimization:
 - Alternating optimization
 - Modularity of implementation if proximal step is efficient (Jenatton et al., 2010; Mairal et al., 2010)

Hierarchical dictionary learning (Jenatton, Mairal, Obozinski, and Bach, 2010)

- Structure on codes w (not on dictionary X)
- Hierarchical penalization: $\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_2$ where groups G in \mathbf{H} are equal to set of descendants of some nodes in a tree

• Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)

Hierarchical dictionary learning Modelling of text corpora

- Each document is modelled through word counts
- Low-rank matrix factorization of word-document matrix
- Probabilistic topic models (Blei et al., 2003)
 - Similar structures based on non parametric Bayesian methods (Blei et al., 2004)
 - Can we achieve similar performance with simple matrix factorization formulation?

Modelling of text corpora - Dictionary tree

Structured sparsity - **Audio processing Source separation (Lefèvre et al., 2011)**

Time

Time

Structured sparsity - Audio processing Musical instrument separation (Lefèvre et al., 2011)

- Unsupervised source separation with group-sparsity prior
 - Top: mixture
 - Left: source tracks (guitar, voice). Right: separated tracks.

Outline

- Introduction: Sparse methods for machine learning
 - Need for structured sparsity: Going beyond the ℓ_1 -norm
- Classical approaches to structured sparsity
 - Linear combinations of ℓ_q -norms
 - Applications
- Structured sparsity through submodular functions
 - Relaxation of the penalization of supports
 - Unified algorithms and analysis

ℓ_1 -norm = convex envelope of cardinality of support

- Let $w \in \mathbb{R}^p$. Let $V = \{1, \ldots, p\}$ and $\operatorname{Supp}(w) = \{j \in V, w_j \neq 0\}$
- Cardinality of support: $||w||_0 = Card(Supp(w))$
- Convex envelope = largest convex lower bound (see, e.g., Boyd and Vandenberghe, 2004)

• ℓ_1 -norm = convex envelope of ℓ_0 -quasi-norm on the ℓ_∞ -ball $[-1,1]^p$

Convex envelopes of general functions of the support (Bach, 2010)

- Let $F: 2^V \to \mathbb{R}$ be a set-function
 - Assume F is non-decreasing (i.e., $A \subset B \Rightarrow F(A) \leqslant F(B)$)
 - Explicit prior knowledge on supports (Haupt and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009)
- Define $\Theta(w) = F(\operatorname{Supp}(w))$: How to get its convex envelope?
 - 1. Possible if F is also **submodular**
 - 2. Allows **unified** theory and algorithm
 - 3. Provides new regularizers

• $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$

 $\Leftrightarrow \ \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

• $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

Intuition 1: defined like concave functions ("diminishing returns")
 – Example: F : A → g(Card(A)) is submodular if g is concave

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

- Intuition 1: defined like concave functions ("diminishing returns")
 Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\begin{aligned} \forall A,B \subset V, \quad F(A) + F(B) \geqslant F(A \cap B) + F(A \cup B) \\ \Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing} \end{aligned}$

- Intuition 1: defined like concave functions ("diminishing returns")
 Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory
- Used in several areas of signal processing and machine learning
 - Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)
 - Optimal design (Krause and Guestrin, 2005)

Submodular functions - Examples

- Concave functions of the cardinality: g(|A|)
- Cuts
- Entropies
 - $H((X_k)_{k \in A})$ from p random variables X_1, \ldots, X_p
- Network flows
 - Efficient representation for set covers
- Rank functions of matroids

Submodular functions - Lovász extension

- Subsets may be identified with elements of $\{0,1\}^p$
- Given any set-function F and w such that $w_{j_1} \ge \cdots \ge w_{j_p}$, define:

$$f(w) = \sum_{k=1}^{p} w_{j_k}[F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

- If $w = 1_A$, $f(w) = F(A) \Rightarrow$ extension from $\{0, 1\}^p$ to \mathbb{R}^p - f is piecewise affine and positively homogeneous
- F is submodular if and only if f is convex (Lovász, 1982)
 - Minimizing f(w) on $w \in [0,1]^p$ equivalent to minimizing F on 2^V

Submodular functions and structured sparsity

- Let $F: 2^V \to \mathbb{R}$ be a non-decreasing submodular set-function
- **Proposition**: the convex envelope of $\Theta : w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega : w \mapsto f(|w|)$ where f is the Lovász extension of F

Submodular functions and structured sparsity

- Let $F: 2^V \to \mathbb{R}$ be a non-decreasing submodular set-function
- **Proposition**: the convex envelope of $\Theta : w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega : w \mapsto f(|w|)$ where f is the Lovász extension of F
- Sparsity-inducing properties: Ω is a polyhedral norm

- A if stable if for all $B \supset A$, $B \neq A \Rightarrow F(B) > F(A)$
- With probability one, stable sets are the only allowed active sets

Polyhedral unit balls

Submodular functions and structured sparsity

• Unified theory and algorithms

- Generic computation of proximal operator
- Unified oracle inequalities

• Extensions

- Shaping level sets through symmetric submodular function (Bach, 2011)
- ℓ_q -relaxations of combinatorial penalties (Obozinski and Bach, 2011)

Conclusion

• Structured sparsity for machine learning and statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms

Conclusion

• Structured sparsity for machine learning and statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms
- On-going/related work on structured sparsity
 - Norm design beyond submodular functions
 - Complementary approach of Jacob, Obozinski, and Vert (2009)
 - Theoretical analysis of dictionary learning (Jenatton, Bach and Gribonval, 2011)
 - Achieving $\log p = O(n)$ algorithmically (Bach, 2008)

References

- F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing Systems, 2008.
- F. Bach. Structured sparsity-inducing norms through submodular functions. In NIPS, 2010.
- F. Bach. Convex analysis and optimization with submodular functions: a tutorial. Technical Report 00527714, HAL, 2010.
- F. Bach. Shaping level sets with submodular functions. In Adv. NIPS, 2011.
- F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. 2011.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. Technical Report 00613125, HAL, 2011.
- R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive sensing. Technical report, arXiv:0808.3572, 2008.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.
- D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. *The Journal of Machine Learning Research*, 3:993–1022, January 2003.
- D. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical topic models and the nested Chinese restaurant process. *Advances in neural information processing systems*, 16:106, 2004.
- S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

- Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. *IEEE Trans. PAMI*, 23(11):1222–1239, 2001.
- V. Cevher, M. F. Duarte, C. Hegde, and R. G. Baraniuk. Sparse signal recovery using markov random fields. In *Advances in Neural Information Processing Systems*, 2008.
- A. Chambolle. Total variation minimization and a class of binary MRF models. In *Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 136–152. Springer, 2005.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Review*, 43(1):129–159, 2001.
- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 15(12):3736–3745, 2006.
- S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.
- A. Gramfort and M. Kowalski. Improving M/EEG source localization with an inter-condition sparse prior. In *IEEE International Symposium on Biomedical Imaging*, 2009.
- J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. *IEEE Transactions on Information Theory*, 52(9):4036–4048, 2006.
- J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In *Proceedings of the 26th International Conference on Machine Learning (ICML)*, 2009.
- L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and graph Lasso. In *Proceedings of the 26th International Conference on Machine Learning (ICML)*, 2009.
- R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009a.

- R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report, arXiv:0909.1440, 2009b.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In *Submitted to ICML*, 2010.
- R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, and B. Thirion. Multi-scale mining of fmri data with hierarchical structured sparsity. Technical report, Preprint arXiv:1105.0363, 2011. In submission to SIAM Journal on Imaging Sciences.
- K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In *Proceedings of CVPR*, 2009.
- S. Kim and E. P. Xing. Tree-guided group Lasso for multi-task regression with structured sparsity. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2010.
- A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In *Proc.* UAI, 2005.
- L. Lovász. Submodular functions and convexity. *Mathematical programming: the state of the art, Bonn*, pages 235–257, 1982.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Technical report, arXiv:0908.0050, 2009a.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In *Computer Vision, 2009 IEEE 12th International Conference on*, pages 2272–2279. IEEE, 2009b.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. Advances

in Neural Information Processing Systems (NIPS), 21, 2009c.

- J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In *NIPS*, 2010.
- Y. Nesterov. Gradient methods for minimizing composite objective function. *Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep*, 76, 2007.
- G. Obozinski and F. Bach. Convex relaxation of combinatorial penalties. Technical report, HAL, 2011.
- B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? *Vision Research*, 37:3311–3325, 1997.
- F. Rapaport, E. Barillot, and J.-P. Vert. Classification of arrayCGH data using fused SVM. *Bioinformatics*, 24(13):i375–i382, Jul 2008.
- M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for convex optimization. *Arxiv preprint arXiv:1109.2415*, 2011.
- R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288, 1996.
- G. Varoquaux, R. Jenatton, A. Gramfort, G. Obozinski, B. Thirion, and F. Bach. Sparse structured dictionary learning for brain resting-state activity modeling. In *NIPS Workshop on Practical Applications of Sparse Modeling: Open Issues and New Directions*, 2010.
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of The Royal Statistical Society Series B*, 68(1):49–67, 2006.
- P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. *Annals of Statistics*, 37(6A):3468–3497, 2009.