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Outline

e Introduction: Sparse methods for machine learning

— Need for structured sparsity: Going beyond the ¢;-norm

e Classical approaches to structured sparsity
— Linear combinations of ¢,-norms
— Applications
e Structured sparsity through submodular functions

— Relaxation of the penalization of supports
— Unified algorithms and analysis



Sparsity in supervised machine learning

e Observed data (x;,y4,) € RP xR, i =1,...,n

— Response vector y = (y1,...,vy,) € R"
— Design matrix X = (xq,...,x,) € R"¥P

e Regularized empirical risk minimization:

min — Zﬁ(yi, w'z;) + AQw) =| min Ly, Xw) + A\Q(w)

wERP

e Norm () to promote sparsity

— square loss + £1-norm = basis pursuit in signal processing (Chen
et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
— Proxy for interpretability

— Allow high-dimensional inference: | logp = O(n)




Sparsity in unsupervised machine learning

e Multiple responses/signals y = (y!,...,y") € R*¥*



Sparsity in unsupervised machine learning

e Multiple responses/signals y = (y!, ..., y*) € R"¥*

k

min Z{L(yj,ij) —I—)\Q(wj)}

wl ... wkeRpr “

e Only responses are observed = Dictionary learning
— Learn X = (x!,...,2P) € R™*? such that Vj, ||z7|]> <1

min min Ek: {L(yj, Xw?) + )\Q(wj)}

X=(z!,...,2P) wl,.. . wkeRpr *

— Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.
(2009a)

e sparse PCA: replace ||z7|| < 1 by ©(27) < 1



Sparsity in signal processing

e Multiple responses/signals = = (z!,...,z%) € R"*k

k

min Z {L(CIZ‘j, Da?) + Aﬂ(ozj)}

e Only responses are observed = Dictionary learning
— Learn D = (d',...,dP) € R"™P such that Vj, ||d?|]2 <1

min min i {L(a;j, Da’) + )\Q(ozj)}

D=(d,....dr) al,....akeRpr “

— Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.
(2009a)

e sparse PCA: replace ||d’||]2 <1 by O(d?) < 1



Why structured sparsity?

e Interpretability

— Structured dictionary elements (Jenatton et al., 2009b)
— Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Structured sparse PCA (Jenatton et al., 2009b)
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e Unstructed sparse PCA = many zeros do not lead to better
Interpretability
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e Unstructed sparse PCA = many zeros do not lead to better
Interpretability



Structured sparse PCA (Jenatton et al., 2009b)
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raw data Structured sparse PCA

e Enforce selection of convex nonzero patterns =- robustness to
occlusion in face identification



Structured sparse PCA (Jenatton et al., 2009b)
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e Enforce selection of convex nonzero patterns =- robustness to
occlusion in face identification



Why structured sparsity?

e Interpretability

— Structured dictionary elements (Jenatton et al., 2009b)
— Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



Modelling of text corpora (Jenatton et al., 2010)
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Why structured sparsity?

e Interpretability

— Structured dictionary elements (Jenatton et al., 2009b)
— Dictionary elements “organized” in a tree or a grid (Kavukcuoglu

et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)
e Stability and identifiability

— Optimization problem min,ecrer L(y, Xw) + A||w||1 is unstable
— "“Codes” w’ often used in later processing (Mairal et al., 2009c¢)

e Prediction or estimation performance

— When prior knowledge matches data (Haupt and Nowak, 2006;
Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

e Numerical efficiency

— Non-linear variable selection with 2P subsets (Bach, 2008)



Classical approaches to structured sparsity

e Many application domains

— Computer vision (Cevher et al., 2008; Mairal et al., 2009b)
— Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al.,

2011)
— Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

e Non-convex approaches

— Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al.
(2009)

e Convex approaches

— Design of sparsity-inducing norms



Outline

e Introduction: Sparse methods for machine learning

— Need for structured sparsity: Going beyond the ¢;-norm

e Classical approaches to structured sparsity
— Linear combinations of ¢,-norms
— Applications
e Structured sparsity through submodular functions

— Relaxation of the penalization of supports
— Unified algorithms and analysis



Sparsity-inducing norms

e Popular choice for ()
— The #1-f5 norm,

S llwel, = > (3w

GecH GeH jeG

— with H a partition of {1,...,p}

— The /1-f5 norm sets to zero groups of non-overlapping
variables (as opposed to single variables for the /;-norm)

— For the square loss, group Lasso (Yuan and Lin, 2006)




Unit norm balls
Geometric interpretation

w2 w1 Vwi + w3 + |ws]



Sparsity-inducing norms

e Popular choice for ()
— The #1-f5 norm,

S lwell, =3 (> w?) Gq

GeH GeH jeG 4

— with H a partition of {1,...,p} T
— The /1-¢5 norm sets to zero groups of non-overlapping
variables (as opposed to single variables for the /;-norm)

— For the square loss, group Lasso (Yuan and Lin, 2006)

e However, the /-5 norm encodes fixed/static prior information,
requires to know in advance how to group the variables

e \What happens if the set of groups H is not a partition anymore?



Structured sparsity with overlapping groups
(Jenatton, Audibert, and Bach, 2009a)

e When penalizing by the ¢1-/5 norm,

S lwell, =3 (D w?)? Gy

GEH GeH jed i I
— The /1 norm induces sparsity at the group level:

+ Some wg's are set to zero L GB
— Inside the groups, the /5 norm does not promote sparsity




Structured sparsity with overlapping groups
(Jenatton, Audibert, and Bach, 2009a)

e \When penalizing by the ¢1-/5 norm,

S lwell, =3 (D w2 Gy

GEH GeH jed 1| -
— The /1 norm induces sparsity at the group level:

+ Some w¢'s are set to zero L GB
— Inside the groups, the /5 norm does not promote sparsity

e The zero pattern of w is given by

{j, w; =0} = UG for some H C H
GeH/’
e Zero patterns are unions of groups



Examples of set of groups H

e Selection of contiguous patterns on a sequence, p = 6

-

— H is the set of blue groups

— Any union of blue groups set to zero leads to the selection of a
contiguous pattern



Examples of set of groups H

e Selection of rectangles on a 2-D grids, p = 25

— H is the set of blue/green groups (with their not displayed
complements)

— Any union of blue/green groups set to zero leads to the selection
of a rectangle



Examples of set of groups H

e Selection of diamond-shaped patterns on a 2-D grids, p = 25.
— It is possible to extend such settings to 3-D space, or more complex
topologies




Unit norm balls
Geometric interpretation

Jw||1 Vw4 w3 + |ws) Jw||2 + Jw1| + |wo|



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2011)

e Gradient descent as a proximal method (differentiable functions)

. B
~ Wit = arg min L(wy) + (w — wt)TVL(wt)+§\\w — wyl|3

— W41 — Wy — %VL(’U}t)



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2011)

e Gradient descent as a proximal method (differentiable functions)

— Wil = arg 1{)%1[@9 L(wy) + (w — wt)TVL(wt)+§\\w — wyl|3

— W¢+1 — Wy — %VL(wt)

e Problems of the form: miﬂg) L(w) + AQ(w)
we

B
= wigr = arg min L(wy) +(w—wy) "V L(we) +AQ(w)+ 7 [[w — w3

wEeRP

— Q(w) = ||lw||; = Thresholded gradient descent

e Similar convergence rates than smooth optimization

— Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Comparison of optimization algorithms
(Mairal, Jenatton, Obozinski, and Bach, 2010)
Small scale

e Specific norms which can be implemented through network flows

n=100, p=1000, one—-dimensional DCT
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Comparison of optimization algorithms
(Mairal, Jenatton, Obozinski, and Bach, 2010)
Large scale

e Specific norms which can be implemented through network flows

n=1024, p=10000, one—dimensional DCT n=1024, p=100000, one—-dimensional DCT
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Approximate proximal methods
(Schmidt, Le Roux, and Bach, 2011)

1

e Exact computation of proximal operator arg mle?—Hw—zHQqL)\Q( w)
€

— Closed form for ¢1-norm
— Efficient for overlapping group norms (Jenatton et al., 2010; Mairal

et al., 2010)
e Convergence rate: O(1/t) and O(1/t?) (with acceleration)

e Gradient or proximal operator may be only approximate

— Preserved convergence rate with appropriate control
— Approximate gradient with non-random errors
— Complex regularizers



Stochastic approximation
(Bach and Moulines, 2011)

e Loss = generalization error L(w) = E(, , ((y,w ' x)

e Stochastic approximation: optimizing L(w) given a sequence of
samples (¢, y:), t=1,...,n

e Context: large-scale learning (large n)

e Main algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)
0 T

— lteration: w; = w1 — %a—wﬁ(yt,w 33t)|

— Classical choice in machine learning: ~ = C'/t = Wrong choice

W=Wt—-1

e Good choice: Use averaging of iterates with v; = C/tl/2

— Robustness to difficulty of the problem and to the setting of



Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

/1{-norm Structured norm




Application to background subtraction
(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background ¢1-norm Structured norm




Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

e “Brain reading”: prediction of (seen) object size

e Multi-scale activity levels through hierarchical penalization

Scale 1 - Fold 9

-5.00e-02 5.00e-02




Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

e “Brain reading”: prediction of (seen) object size

e Multi-scale activity levels through hierarchical penalization

Scale 3 - Fold 9

-5.00e-02 5.00e-02




Application to neuro-imaging
Structured sparsity for fMRI (Jenatton et al., 2011)

e “Brain reading”: prediction of (seen) object size

e Multi-scale activity levels through hierarchical penalization

Scale 6 - Fold 9

-5.00e-02 5.00e-02




Sparse Structured PCA
(Jenatton, Obozinski, and Bach, 2009b)

e Learning sparse and structured dictionary elements:

min ZHy — Xw' ][2—1—)\29 (z7) s.t. Vi, [|[w']s < 1

WEkan XERpXk n !
Jj=



Application to face databases (1/3)
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raw data (unstructured) NMF

e NMF obtains partially local features



Application to face databases (2/3)
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(unstructured) sparse PCA  Structured sparse PCA

e Enforce selection of convex nonzero patterns =- robustness to
occlusion



Application to face databases (2/3)

(unstructured) sparse PCA  Structured sparse PCA

e Enforce selection of convex nonzero patterns =- robustness to
occlusion



Application to face databases (3/3)

e Quantitative performance evaluation on classification task

45

''''' raw data
~—=PCA

| == NMF
40 —SPCA
%shared—SPCA
35+ éSSPCA
shared-SSPCA

et L

% Correct classification

20 40 60 80 100 120 140
Dictionary size



Structured sparse PCA on resting state activity

(Varoquaux, Jenatton, Gramfort, Obozinski, Thirion,
and Bach, 2010)




Dictionary learning vs. sparse structured PCA
Exchange roles of X and w

e Sparse structured PCA (structured dictionary elements):

min ZHy — X' H2+)\ZQ (x7) s.t. Vi, |wi]s < 1.

WEkan XeRpxk: n .
Jj=

e Dictionary learning with structured sparsity for codes w:

min Zuy — Xw'|2 + AQw') st. V5, |27 < 1.
WGRan XE]RpXk n
e Optimization:

— Alternating optimization

— Modularity of implementation if proximal step is efficient
(Jenatton et al., 2010; Mairal et al., 2010)



Hierarchical dictionary learning
(Jenatton, Mairal, Obozinski, and Bach, 2010)

e Structure on codes w (not on dictionary X)

where groups G

ZGeH HwGHQ

(w)
in H are equal to set of descendants of some nodes in a tree

Q

e Hierarchical penalization:

oo VNN EN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B W g,

o VNN BN BN BN EN BN BN BN BN BN BN BN BN BN BN BN BN BN BN N BN B W g,

L4

.

1
1
1
1
1
1
1
1
1
1

R

M T T I I I T T T T T .

e Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)



Hierarchical dictionary learning
Modelling of text corpora

e Each document is modelled through word counts
e Low-rank matrix factorization of word-document matrix

e Probabilistic topic models (Blei et al., 2003)

— Similar structures based on non parametric Bayesian methods (Blei
et al., 2004)

— Can we achieve similar performance with simple matrix
factorization formulation?



Modelling of text corpora - Dictionary tree
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Amplitude

Frequency

Structured sparsity - Audio processing
Source separation (Lefévre et al., 2011)

Amplitude

Time Time

Frequency




Structured sparsity - Audio processing
Musical instrument separation (Lefévre et al., 2011)

e Unsupervised source separation with group-sparsity prior

— Top: mixture
— Left: source tracks (guitar, voice). Right: separated tracks.
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¢1-norm = convex envelope of cardinality of support
o Let we RP. Let V ={1,...,p} and Supp(w) ={5 €V, w; #0}
e Cardinality of support: ||w|o = Card(Supp(w))

e Convex envelope = largest convex lower bound (see, e.g., Boyd and
Vandenberghe, 2004)

AN A S

: o
-1 1

e /1-norm = convex envelope of {y-quasi-norm on the ¢ -ball [—1, 1P



Convex envelopes of general functions of the support
(Bach, 2010)

o Let I': 2V — R be a set-function

— Assume F' is non-decreasing (i.e., AC B= F(A) < F(B))
— Explicit prior knowledge on supports (Haupt and Nowak, 2006;
Baraniuk et al., 2008; Huang et al., 2009)

e Define ©(w) = F(Supp(w)): How to get its convex envelope?

1. Possible if F'is also submodular
2. Allows unified theory and algorithm
3. Provides new regularizers



Submodular functions (Fujishige, 2005; Bach, 2010)

o [':2Y — R is submodular if and only if

VA,BCV, F(A)+F(B)>F(ANnB)+ F(AUB)
& VekeV, Aw— F(AU{k})— F(A) is non-increasing
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Submodular functions (Fujishige, 2005; Bach, 2010)

o [':2V — R is submodular if and only if

VA,BCV, F(A)+F(B)>F(AnB)+ F(AUB)
& VekeV, Aw— F(AU{k})— F(A) is non-increasing

e Intuition 1: defined like concave functions ( “diminishing returns”)

— Example: F: A~ g(Card(A)) is submodular if g is concave

e Intuition 2: behave like convex functions

— Polynomial-time minimization, conjugacy theory

e Used in several areas of signal processing and machine learning

— Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)
— Optimal design (Krause and Guestrin, 2005)



Submodular functions - Examples

e Concave functions of the cardinality: g(|A|)
e Cuts

e Entropies

— H((X%)rea) from p random variables X1, ..., X,

e Network flows

— Efficient representation for set covers

e Rank functions of matroids



Submodular functions - Lovasz extension

e Subsets may be identified with elements of {0, 1}?

e Given any set-function F' and w such that w;, > --- > w;,, define:
p
f(w) — ijk[F({]lv SRR 7]k}) _ F({]lv SR 7j7€—1})]
k=1

— If w=14, f(w) = F(A) = extension from {0,1}? to RP
— f is piecewise affine and positively homogeneous

e [ is submodular if and only if f is convex (Lovéasz, 1982)

— Minimizing f(w) on w € [0, 1]P equivalent to minimizing F on 2"



Submodular functions and structured sparsity

o Let I': 2" — R be a non-decreasing submodular set-function

e Proposition: the convex envelope of © : w — F(Supp(w)) on the
lso-ball is 0 : w — f(|lw]) where f is the Lovasz extension of F



Submodular functions and structured sparsity

o Let I': 2" — R be a non-decreasing submodular set-function

e Proposition: the convex envelope of © : w — F(Supp(w)) on the
lso-ball is © : w — f(|lw]) where f is the Lovasz extension of F

e Sparsity-inducing properties: () is a polyhedral norm

>

(0,1)/F({2}) (1,1)/F({1,2})

Y
Y

>

(1,0)/F({1})

— Aifstableif forall B> A B# A= F(B) > F(A)
— With probability one, stable sets are the only allowed active sets



Polyhedral unit balls

F(A) = [4] F(A) = min{|A|, 1} F(A) = |A]\/?
Q(w) = [Jwly Q(w) = ||w||so all possible extreme points

F(A) = 1ian{1,2,3) 20}
+1ran{2,3120} T 1{an(3}£0}
Q(w) = ||[w||oo + [[wiz,3y]]cc + |ws]

F(A) = 1ianiy2oy + liange,3120)
Q(w) = |wi] + w2330



Submodular functions and structured sparsity

e Unified theory and algorithms

— Generic computation of proximal operator
— Unified oracle inequalities

e Extensions

— Shaping level sets through symmetric submodular function (Bach,
2011)

— {,-relaxations of combinatorial penalties (Obozinski and Bach,
2011)



Conclusion

e Structured sparsity for machine learning and statistics

— Many applications (image, audio, text, etc.)
— May be achieved through structured sparsity-inducing norms
— Link with submodular functions: unified analysis and algorithms



Conclusion

e Structured sparsity for machine learning and statistics

— Many applications (image, audio, text, etc.)
— May be achieved through structured sparsity-inducing norms
— Link with submodular functions: unified analysis and algorithms

e On-going/related work on structured sparsity

— Norm design beyond submodular functions

— Complementary approach of Jacob, Obozinski, and Vert (2009)

— Theoretical analysis of dictionary learning (Jenatton, Bach and
Gribonval, 2011)

— Achieving log p = O(n) algorithmically (Bach, 2008)
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